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ABSTRACT

Automated Speaker Profiling (ASP) refers broadly to the computational predic-

tion of speaker traits based on cues mined from the speech signal. Accurate prediction

of such traits can have a wide variety of applications such as automating the collection

of customer metadata, improving smart-speaker/voice-assistant interactions, narrowing

down suspect pools in forensic situations, etc.

Approaches to ASP to date have primarily focused on single-task computational

models– i.e. models which each predict one speaker trait in isolation. Recent work

however has suggested that using a multi-task learning framework, in which a system

learns to predict multiple related traits simultaneously, each trait-prediction task having

access to the training signals of all other trait-prediction tasks, can increase classification

accuracy along all trait axes considered.

Likewise, most work on ASP to date has focused primarily on acoustic cues as

predictive features for speaker profiling. However, there is a wide range of evidence

from the sociolinguistic literature that lexical and phonological cues may also be of

use in predicting social characteristics of a given speaker. Recent work in the field
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of author profiling has also demonstrated the utility of lexical features in predicting

social information about authors of textual data, though few studies have investigated

whether this carries over to spoken data.

In this dissertation I focus on prediction of five different social traits: sex, eth-

nicity, age, region, and education. Linguistic features from the acoustic, phonetic, and

lexical realms are extracted from 60 second chunks of speech taken from the 2008 NIST

SRE corpus and used to train several types of predictive models. Naive (majority

class prediction) and informed (single-task neural network) models are trained to pro-

vide baseline predictions against which multi-task neural network models are evaluated.

Feature importance experiments are performed in order to investigate which features

and feature types are most useful for predicting which social traits.

Results presented in chapters 5-7 of this dissertation demonstrate that multi-

task models consistently outperform single-task models, that models are most accurate

when provided information from all three linguistic levels considered, and that lexical

features as a group contribute substantially more predictive power than either phonetic

or acoustic features.

Index words: Automated Speaker Profiling, Computational linguistics,
Sociolinguistics, Machine learning, Multi-task learning
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Chapter 1: Introduction

Automated Speaker Profiling (ASP) refers broadly to the computational extrac-

tion/prediction of speaker traits from the speech signal. The predicted traits may be

physiological (e.g. height, weight, age, smoking habits), psychological (e.g. emotional

state, stress level), or social (e.g. gender, ethnicity, education level, socio-economic

status, dialect-region). Accurate prediction of such traits can have a wide variety of

forensic, commercial, and medical applications such as narrowing down suspect pools,

improving interactive voice-response systems, customizing service interactions, etc.

Nearly all ASP work performed on spoken data to date attempts to predict speaker

characteristics via two basic steps. First, the speech signal is reduced to some type of

vector-based representation (most often via the application of Gaussian Mixture Models

[GMMs] to Mel-frequency cepstral coefficients [MFCCs] extracted from the signal). This

vector representation is then used as a feature set for training a classificatory machine

learning algorithm (often some type of Support Vector Machine [SVM]). In the majority

of cases, the representation of the speech signal consists primarily of “low-level” acoustic

information such as cepstral features, jitter, shimmer, sound pressure level, etc. and

does not reflect much if any “high-level” information regarding specific phonetic, lexical,

or discoursal phenomena. While such features may carry great explanatory weight for

primarily biologically based speaker traits such as height and weight, they are less likely

to be of use in predicting more socially-based traits such as dialect, education level, and

to a lesser extent mixed biologically- and socially-based traits such as gender.
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Despite the primary focus on low-level acoustic information in Automated Speaker

Profiling using spoken data, there is a wealth of sociolinguistic literature demonstrating

a link between usage patterns of phonetic, lexical, and discoursal variables and nearly

every social trait one would desire an ASP system to predict. A number of authors for

example have demonstrated links between realizations of certain phonetic variables and

speaker gender (e.g. Eddington and Taylor, 2009; Stuart-Smith, 2007), age (e.g. Barbieri,

2008; Labov, 1966; Sankoff and Blondeau, 2007), ethnicity (e.g. Hoffman and Walker,

2010; Mendoza-Denton, 1997), and a host of other social categories. There is also a

growing body of sociolinguistic work examining the social stratification of certain dis-

course and lexical phenomena (e.g. Cheshire, 2005; Johannsen et al., 2015; Tagliamonte

and D’Arcy, 2007). In addition to the more traditional sociolinguistic work examining

language features and social categories, there has also been a recent flurry of activity

within computational sociolinguistics focused on the prediction of social categories from

lexical and syntactic features present in text-based corpora– particularly corpora falling

within the genre of Computer Mediated Communication (e.g. Ardehaly and Culotta,

2015; Bamman et al., 2014; Fink et al., 2012; Rao et al., 2010). Relatedly, work in the

field of automatic speaker recognition (ASR) has also suggested that incorporation of

such high-level features can improve accuracy and robustness in speaker discrimination

tasks (e.g. Doddington, 2001; Reynolds et al., 2003; Kinnunen and Li, 2010). Such

work has direct bearing on the present dissertation, though to my knowledge none of

the resulting findings have been applied to spoken-language speaker profiling.

That the knowledge gleaned from sociolinguistic investigation of these socially-

conditioned variables has not yet been applied to ASP efforts appears due more to

limited inter-disciplinary communication rather than to any severe methodological or

theoretical hurdles. This dissertation aims to bring sociolinguistic inquiry and Au-

tomated Speaker Profiling one step closer together by constructing a multi-factorial

ASP system which takes into account current state-of-the-art approaches to classifying
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speakers based on acoustic traits of the speech signal, as well as realization of certain

phonetic, lexical, and discoursal variables known to pattern socially. It is expected that

such a system will increase accuracy of speaker classification along speaker-trait axes

which are largely or partially socially-based.

Finally, approaches to ASP to date have primarily focused on the prediction of

one speaker-trait in isolation. Some recent work however has provided evidence that

constructing a system which learns to predict multiple traits simultaneously, each trait-

prediction task having access to the training signals of all other trait-prediction tasks,

can increase the accuracy of speaker classification along all trait-axes considered (Poor-

jam et al., 2014; Weninger et al., 2012). This notion fits with the social theory of

intersectionality– the idea that multiple overlapping aspects of social identity inter-

sect to create a holistic individual social identity which is greater than the sum of

its parts (Eckert, 1989; Levon, 2015). This concept has been borne out in variation-

ist sociolinguistic studies as well– sociolinguistic variables have frequently been shown

to be pushed one way by one aspect of identity yet pulled in a different direction by

another. Labov’s (1966) classic study of the social stratification of coda /ô/ in New

York City for example demonstrated that realization of this variable was affected by a

host of social factors, including gender, age, and socio-economic class. Because of the

push and pull that various speaker traits may have on realizations of individual linguis-

tic variables, this dissertation will take a ‘Multi-Task Learning’ approach (c.f. Caruna,

1997) to speaker profiling, allowing all trait-prediction tasks to be learned jointly, each

essentially ‘peeking’ at what the others are doing.
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1.1 Research Questions

Below I lay out the specific research questions I plan to address in this dissertation.

These research questions are revisited in chapters 7 and 8 following the results and

analysis presented in those chapters.

1. Does a multi-factorial system incorporating acoustic, phonological, syntactic, and

lexical information result in significantly higher accuracy for speaker classification com-

pared to systems which only take into account one type of linguistic information?

It’s possible (though somewhat unlikely) that certain social traits may be wholly

reliant on one or another type of linguistic feature. If this were the case, incorporation

of features from other linguistic levels would not meaningfully improve classification

accuracy, and a simple system including only that meaningful type would be preferred

on the basis of computational and methodological efficiency.

2. If so, which type of cues hold the greatest explanatory weight for which social traits?

While there exist some assumptions floating throughout the sociolinguistic and

speaker profiling literature that, for instance, phonological cues are likely more predic-

tive of dialect region whereas lexical cues may be more predictive of education and

social class (e.g. Jessen, 2007), there has not so far as I am aware been any kind high

level, systematic investigation of just which sorts of cues are best suited to predict

which sorts of social traits. Such an investigation would be useful for future work in

speaker profiling.

3. Can a multi-task learning approach provide significant gains in accuracy over a

system in which each speaker trait is predicted in isolation?
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Recent approaches to ASP have demonstrated increased accuracy of speaker classi-

fication using multi-task learning approaches over systems which classify traits individu-

ally. This fits with the notion of intersectionality and the sociolinguistic understanding

of how identity is performed linguistically, in that constellations of social traits interact

and intersect to affect realizations of individual linguistic variables. This dissertation

will follow recent work in attempting to predict each trait of focus first in isolation

(single-task framework) and then in a multi-task framework to assess the relative accu-

racy improvements that a multi-task approach may provide.

1.2 Approach Overview

In this dissertation I focus on prediction of five different social traits: sex, ethnicity,

age, regional origin, and level of education. Linguistic features from the acoustic, pho-

netic, and lexical realms are extracted from 60 second chunks of speech taken from the

2008 NIST Speaker Recognition Evaluation corpus and used to train several types of

predictive models. Naive (majority class prediction) and informed (Single-Task Neural

Network) models are trained to provide baseline predictions for each of the five social

traits of focus against which the multi-task models are evaluated. Multi-Task models

are then trained and compared to the naive and informed baseline models. Comparison

of the multi-task models to the single task informed baseline models directly speaks

to research question 3. Feature importance experiments are then performed on the

best-performing multi-task models in order to address research questions 1 and 2.
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1.3 Chapter Organization

The remaining chapters are organized as follows. Chapter 2 provides a literature review

addressing the current state of Automatic Speaker Profiling, the sociolinguistic princi-

ples and theory on which this dissertation will rely, and the computational models and

frameworks which will form the backbone of the speaker profiling systems I construct

to address the above research questions. Chapter 3 provides an overview of the corpus

that is used to train and test the speaker profiling models used in this dissertation,

as well as a detailed explanation of how each feature was extracted and how the five

social traits of focus are operationalized. Chapter 4 provides a high level exploration

of the distribution of the various social traits examined throughout this dissertation

with respect to the corpus, and an examination of how each extracted linguistic feature

patterns with respect to these social traits within the corpus. Chapter 5 provides re-

sults of naive and informed single-task baseline experiments to predict the social traits

examined in this dissertation, as well as all relevant methodological details regarding

baseline model design, training, and evaluation. Chapter 6 provides the methodologi-

cal details and results for the multi-task experiments predicting these social traits, and

presents comparisons to the naive and informed baseline models. Chapter 7 examines

the relative importance of various linguistic features and feature groups to the perfor-

mance of each of the top-performing multi-task models for each social trait. Chapter

8 provides a detailed discussion of the differences between performance for single-task

and multi-task models, and provides some actionable recommendations for deployment

of these models in an automated speaker profiling context moving forward. Chapter 9

discusses the contributions made by this dissertation to the field of automated speaker

profiling, as well as several limitations of the current work and potential improvements

that could be made in the future.
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Chapter 2: Background

This chapter presents a review of existing work and topics which have bearing on the

present dissertation. I start by discussing previous work on automated speaker profil-

ing, situating the computational approaches within the context of how human forensic

profilers go about classifying unknown speakers demographically. I then turn to a dis-

cussion of the sociolinguistic principles that factor into this investigation, followed by a

(somewhat) brief overview of the types of linguistic features known to be manipulated

in the construction and expression of the aspects of social identity on which this disser-

tation will concentrate. Finally, this section concludes with a discussion of the machine

learning tools and principles which form the basis of the speaker classification systems

detailed in chapters 5 and 6.

2.1 Automated Speaker Profiling

Broadly put, the goal of Automated Speaker Profiling is to mine the speech signal in

order to predict or extract certain social, physiological, or psychological/emotional char-

acteristics of the speaker. As such, ASP systems are primarily employed in situations

in which the identity of a speaker is unknown, but in which some type of demographic

information about that speaker is useful to some end goal of the researcher.1 Accu-
1There do exist applications of ASP in which speaker identity is known, such as the early detection

of Parkinson’s disease via analysis of acoustic cues (Bocklet et al., 2011), but I will not go into such
applications in detail here.
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rate prediction of such social/psychological/physiological traits can have a wide vari-

ety of forensic, commercial, and medical applications such as narrowing down suspect

pools (Schilling and Marsters, 2015), automatically measuring customer satisfaction

(Kamaruddin et al., 2016), remotely diagnosing health conditions such as obesity (Lee

et al., 2013), etc.

Closely related to Automated Speaker Profiling is a sub-field sometimes termed

Automated Author Profiling (AAP). Whereas speaker profiling attempts to predict

characteristics of a speaker using spoken data, author profiling focuses on the prediction

of characteristics of the authors of textual data. While the goals of ASP and AAP

are the same, this difference in data-medium has led naturally to a difference in the

features of focus for these two sister disciplines. Because of the textual nature of the

data, researchers working in author profiling have tended to focus primarily on lexical,

orthographic, and syntactic features in predicting author characteristics. Researchers

working on speaker profiling on the other hand have focused almost exclusively on

acoustic and phonetic features for use in predicting speaker characteristics. While great

strides have been made examining the relative contribution of lexical and discoursal

features to the accuracy of predicting social characteristics of authors from a wide

range of textual genres, these findings have yet to be applied to profiling the ‘authors’

of spoken data. It is therefore unclear at this point to what extent features useful for

profiling in textual genres are applicable to spoken genres, though the AAP literature

represents a good repository from which to draw.

While computational acoustic-based approaches to speaker profiling have been

on the rise since the early 2000’s, the task of speaker classification has long been the

province of human forensic experts using auditory and acoustic phonetic analysis (e.g.

Jessen, 2007; Schilling and Marsters, 2015). To better understand the task computa-

tional systems are faced with in classifying speakers along trait-axes, it is useful to
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examine the methods used by human profiling experts in performing such tasks.

2.1.1 Human forensic approaches to speaker profiling

Human speaker profiling takes place almost exclusively in the realm of forensic lin-

guistics, a branch of applied linguistics particularly concerned with the application of

linguistic knowledge to legal contexts (Coulthard et al., 2016).2 As such the focus is

typically on language as it relates to criminal investigations– narrowing down suspect

pools, verifying the claimed identity of a speaker, etc. (Schilling and Marsters, 2015).

Despite this particular legal focus, the same goals apply in human speaker profiling as in

automated speaker profiling, namely the accurate prediction of certain characteristics

of an individual based solely on his or her speech.

In contrast to most automated methods today, human expert forensic profilers

typically attempt to use cues at all linguistic levels in speaker categorization (Schilling

and Marsters, 2015). Furthermore, profiling experts also recognize that cues at different

linguistic levels may be more informative than others for predicting certain traits. Pho-

netic and phonological cues may be particularly critical in profiling region of speaker

origin for instance, whereas lexical and morphosyntactic cues may be more useful in

approximating education level or occupation type (Jessen, 2007). Human profilers often

start by first identifying the speaker characteristics that are important for the partic-

ular investigation at hand, and then consulting the relevant (socio)linguistic literature

to determine which cues at the syntactic, phonetic, morphological, and lexical levels
2Though some may also consider (first-wave) sociolinguistics as a discipline engaged in human-

driven speaker profiling, the sociolinguistic motivation and direction of inquiry is the direct inverse
of that of speaker profiling. Sociolinguists investigate how and why aspects of social identity may
influence speech, whereas speaker profiling investigates how speech may indicate aspects of social
identity. Though findings from these two realms are undoubtedly related, sociolinguists are rarely if
ever in the business of classifying unknown speakers along social trait axes, whereas this is the prime
directive of forensic and automated speaker profiling research. Simply put, sociolinguistics and speaker
profiling are two trains traveling opposite directions along parallel tracks.
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have been shown to have bearing on said speaker characteristics. Once these features

are established, the profiler will begin an auditory analysis paying specific attention

to those linguistic features which have bearing on the investigation.3 Depending on

the objective of the investigation at hand, auditory analysis may be further augmented

by acoustic phonetic analysis to examine the speech signal in more fine grained detail–

particularly in cases in which fine-grained dialectal divisions are crucial.

This highlights a further distinction between human and automated methods of

speaker profiling, namely the motivation behind what sorts of specific speech features

are examined in making speaker classification determinations. Whereas much of the

work on automated speaker profiling over the last decade has taken a buckshot approach

to extracting a wide range of acoustic phonetic information from the speech signal,

human profilers pay specific attention to those linguistic features known to vary (and

the ways in which they vary) according to the speaker traits they are trying to uncover.

Hill in his review of speaker classification concepts has this to say about focusing on

features for which there is some empirical grounding:

“…if you wish to gather data relevant to classifying speakers, for whatever

reason, you need to understand the attributes of speakers relevant to your

required classification, rather than simply hoping that a genetic algorithm,

neural net, Gaussian Mixture Model, or whatever will do the job for you.

It might, but then again, it very well might not – at least, the classification

will be nothing like as good as a properly informed discrimination that takes

account of what you know about the populations of interest. … What we

don’t want to do is collect unstructured statistics in the hope that something

will ‘pop out’ of the data.”
3It should be noted that while human profilers do pay specific attention to the cues relevant to the

goals of the investigation at hand, such profilers are also usually expert linguists who are able to notice
and take into account linguistic features which they may not have specifically been looking for, but
which may nonetheless have bearing on their task.
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— Hill (2007), pg.24-26

Focusing only on known features of course has the downside that such analyses

will miss any cues important to speaker classification which have not been previously

discussed in the literature, and it should be noted that current machine learning tech-

niques if properly implemented can actually be quite proficient in determining which

out of myriad features are important for classification and thus which to pay attention

to and which to ignore. However, limiting the focus to an empirically grounded pre-

dictive feature set does increase computational efficiency and limit the degree of ‘noise’

feed to the system.

2.1.2 Standard approaches to automated speaker profiling

As mentioned in chapter 1, the vast majority of automated speaker profiling systems to

date rely primarily if not entirely on acoustic features of the speech signal. Typically

such systems rely on some combination of Mel Frequency Cepstral Coefficient (MFCC)

statistics with other acoustic measures such as F0, jitter, voice quality, etc. extracted

from the signal as predictive features for classification. MFCCs were initially intro-

duced for use as features in Automatic Speech Recognition (ASR) in the 1980’s, and

remain heavily used in a wide variety of voice recognition/profiling applications today.

MFCCs are the result of cosine transformation of the real logarithm of the short-term

energy spectrum expressed on the Mel-frequency scale (Davis and Mermelstein, 1980).

Roughly, MFCCs correlate with the shape of the vocal tract during speech production,

thus making MFCC vectors excellent features for use in determining phone-identity

over short time periods (hence their heavy usage in ASR). When averaged over longer

segments of speech production, MFCCs can be of use in estimating the general physical

attributes of a speaker’s vocal tract, rather than determining which specific phone or
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phone sequence is currently being uttered. However, as Hu et al. (2012) note, using

MFCCs can have several drawbacks. First, MFCCs can drastically increase computa-

tional complexity depending on the length of the speech sample analyzed, since they

capture linguistic information at very short time-scales (several ms). Second, MFCC

measurements are greatly affected by recording environment, such that if training data

is recorded with one microphone and testing data another, systems relying on MFCCs

alone are unlikely to produce accurate results. This naturally limits the deployability

of any system relying primarily on MFCC measurements for speaker classification.

Hybrid systems combining MFCC measurements with other acoustic features have

performed quite well in predicting speaker traits which are wholly or partially biolog-

ically based. Profiling speaker sex operationalized as a binary classification task has

been particularly amenable to such approaches. Levitan et al. (2016) for example us-

ing a logistic regression classifier trained on a combination of MFCC and F0 summary

statistics report up to 95.2% accuracy in sex classification from short, 2 second snippets

of recorded telephone speech. Similarly, Shafran et al. (2003) report 95.4% accuracy in

sex detection using a HMM-based classifier trained on F0 and MFCC summary statis-

tics over complete telephone-speech utterances. Hu et al. (2012) report some of the

highest accuracy results in sex identification, achieving 98% accuracy using a two-stage

classifier trained on several cleverly extracted F0 features and using MFCC features as

a secondary gate, though it should be noted that the data-set used in this experiment

consisted of extremely high quality laboratory recordings of speakers producing 77 digit

sequences– not exactly realistic real-world data.

Efforts to estimate speaker age have had somewhat less success than efforts cen-

tered on sex/gender prediction, and, perhaps in part due to the increased difficulty of

the task, there has been comparatively less work in this area of speaker profiling than

on sex/gender prediction. One of the few attempts to computationally estimate linear
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(i.e. numerical) speaker age is Poorjam et al. (2014). They report a Pearson correlation

coefficient of 0.76 for males and 0.85 for females between actual and estimated linear

age using Least Squares Support Vector Regression (LSSVR) based on i-vector trans-

formation of MFCC features. More often researchers bin age into discrete categories,

treating it as a categorical variable versus a linear one. Li et al. (2013) for example

use a combination of prosodic and MFCC features to train a Support Vector Machine

classifier in a four-way age classification task based on the Agender corpus (Burkhardt

et al., 2010), achieving an unweighted accuracy of 45.8%. Similarly, Weninger et al.

(2012) using a linear Support Vector Machine Classifier trained on the extended feature

set (all acoustic features, but no MFCC features) of the 2012 INTERSPEECH speaker

trait challenge (Schuller et al., 2012) report up to 61% unweighted average recall on

the same four-way age classification task using the same data.

This subsection has been dedicated to discussing the basic standard approaches

taken towards ASP to date. Below I turn to a discussion of some recent work that

goes beyond this standard approach, taking into account features at levels beyond the

acoustic.

2.1.3 Automated Speaker Profiling beyond the acoustic level

Compared to the plethora of work in automated speaker profiling which focuses on

acoustic information as the basis for predictive features, there has been relatively little

work examining the predictive power of features from other linguistic levels in the

classification of speaker traits.

There have been a few recent attempts to incorporate phonetic information into

ASP systems, but to the best of my knowledge such attempts have been entirely aimed

at predicting speaker dialect. In these cases, separate GMMs are fit to MFCCs extracted
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for each phone-type individually rather than for the speech signal as a whole. These

phone-type vectors are then stacked into a super-vector prior to classification, effectively

presenting the ML model with a summary-view of an individual’s phonetic system (e.g.

Biadsy, 2011; Biadsy et al., 2011). While effective for dialect classification, it should

be noted that such an approach fails to take into account phonetic variables which may

be contextually conditioned (e.g. fronting of /N/ to /n/ in the progressive, pre-nasal

raising of /æ/), multi-phonemic/reductive (e.g. consonant cluster reduction, word-final

consonant deletion), or temporally dynamic (e.g. diphthong trajectories). It seems

likely that, though perhaps computationally more expensive, the incorporation of such

features may greatly improve predictive accuracy for dialect as well as any other social

trait for which phonetic information may be useful. Though sociolinguistic evidence has

been found for meaningful phonetic variation tied to gender (Stuart-Smith, 2007), age

(Sankoff and Blondeau, 2007), ethnicity (Mendoza-Denton, 1997), and socioeconomic

status (Trudgill, 1974), no ASP system which I’m aware of attempting to predict these

categories has taken phonetic information into account.

Even less explored than phonetic information is the predictive power that dis-

course, (morpho)syntactic and lexical features might hold for spoken-language speaker

profiling. While seldom used in speaker profiling, there is a wealth of evidence from

author profiling studies that such features can be used to great effect in categorizing

authors of textual data. Rao et al. (2010) for example used a number of lexical and or-

thographic features to classify Twitter users according to gender (male/female, 72% ac-

curacy), age (above/below 30, 74% accuracy), regional origin (north/south India, 77%

accuracy), and political orientation (Democrat/Republican, 83% accuracy). Nguyen

et al. (2013) have even demonstrated that reasonable accuracy (micro F1 scores4 be-

tween 0.85-0.87) can be achieved in classifying Twitter users by age-group and life-stage
4F1 score here refers to an evaluation metric ranging from 0 - 1 which is calculated based on the

number of true positives, false positives, and false negatives observed. Micro F1 score is the weighted
average F1 score over all classes.
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based on unigram lexical information alone. Such work parallels sociolinguistic work

demonstrating gender and age-based variation at the discourse, syntactic and lexical

levels (e.g. Barbieri, 2008; Cheshire, 2005; Schleef, 2005), however the only work of

which I’m aware that attempts to use such information in categorizing speakers of spo-

ken data is (Sulayes, 2009; as reported in Schilling and Marsters, 2015), who worked

with transcriptions of spoken data from the Switchboard corpus.

2.2 Sociolinguistic Foundations

In this section I go over a few sociolinguistic concepts key to this dissertation, and

explain in more detail the motivation for taking a sociolinguistically grounded approach

to automated speaker profiling.

2.2.1 The sociolinguistic variable

The atomic unit upon which variationist sociolinguistics is based is the “sociolinguistic

variable.” Before proceeding it is necessary to point out that I will be using this term

in a somewhat expanded capacity compared to its traditional definition. The standard

definition of a sociolinguistic variable is an underlying structure which has two or more

identifiable surface variants which are referentially and semantically equivalent and

not wholly dictated by surrounding linguistic structure but rather co-vary with social

categories such as class, sex, and age. A canonical example of such a traditional soci-

olinguistic variable is the alternation between the alveolar (IN) and velar (ING) nasal

in the progressive suffix “-ing” as in “running” (e.g. Trudgill, 1974). Because of the

requirement for referential equivalence and identifiable surface variants, the applica-

tion of the term “sociolinguistic variable” to morphosyntactic and lexical alternations

which may not necessarily be referentially equivalent, or features which vary in terms
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of presence vs. absence rather than variant vs. variant, is sometimes controversial.5

In this dissertation, I will be taking a broader view of the sociolinguistic variable,

defining it for my purposes to mean any linguistic feature for which some social category

X exhibits a demonstrably different usage pattern than some social category Y. Doing

so allows the inclusion of features such as frequency of particular lexemes per thousand

words under the umbrella of the sociolinguistic variable if such a feature indeed co-varies

with some particular social category, whereas the traditional definition would exclude

such a feature. It is my view that the difference between, say, two social groups evincing

a difference in IN / (IN + ING) percentage and those same social groups evincing a

difference in proportional usage of specific lexemes per thousand words lies solely in

the operationalization of variant frequency, and that this is not a principled reason to

distinguish them here.

2.2.2 Indexicality

Indexicality is the key principle through which sociolinguistic variables are theorized to

be imbued with social meaning. In essence, indexicality refers to the ability for certain

linguistic features to point to or “index” certain social categories and/or stances. These

linguistic variables or features may take on different levels of indexical meaning depend-

ing on the social contexts in which they are used, or the level of conscious awareness

speakers may have of them. Silverstein’s (2003) “orders of indexicality” framework is

typically the departure point from which indexical meaning is sociolinguistically treated

at present. As operationalized by Johnstone and Kiesling (2008) and Eckert (2008a),

1st order indexical meaning is characterized by the correlation between a particular

pattern of variant/feature usage and a particular socio-demographic group. This corre-
5see for instance Lavandera (1978) for an argument towards relaxing the requirement for referen-

tial/semantic equivalence, and Labov’s (1978) subsequent rebuttal.
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lation is one which an outsider could observe, but of which the users themselves are not

necessarily conscious. First order indexicality roughly correlates with Labov’s (1972b)

concept of sociolinguistic “indicators”– features which may be associated with particu-

lar social groups but which do not exhibit patterns of stylistic variation and of which

speakers are not consciously aware.6 The transition from first order to second order

indexical meaning comes to pass when differential usage patterns are in some sense

recognized by speakers in the community, imbued with ideological meanings associated

with and/or extracted from their underlying first order usage distributions, and so be-

come available for social work (i.e. stylistic variation). Johnstone and Kiesling (2008)

give the example of speakers in Texas drawing on a pre-existing division between ur-

ban and rural speakers in /ai/ monophthongization to imbue monophthongal /ai/ with

associated meanings of ruralness, thus making /ai/ monophthongization available for

social work as a linguistic resource for claiming a rural identity and “authentic Tex-

anness.” Second order indexicality roughly correlates with the Labovian concept of

linguistic “markers”– those features which due to pre-existing usage differences within

the community take on social significance and exhibit stylistic variation, but which are

not typically overtly commented on (and not necessarily consciously recognized by their

users). Second order indexicals may take on third order indexical meanings when they

enter the conscious awareness of community members and thus become available for ex-

plicit meta-discursive comment, becoming manipulable at will for stylized performance

of the identities or social characteristics associated with them. Third order indexicals

correspond with what Labov termed the ‘stereotype’– features which are overtly socially

commented on and may become magnified in stylized performance such that they no

longer reflect the form actually used by the community at large. Though in Silverstein’s

original framework there is theoretically no end to possible orders of indexicality,7 so-
6See Johnstone and Kiesling (2008), pg.8-9 for a detailed comparison between the Labovian taxon-

omy and Silverstein’s orders of indexicality.
7Silverstein discussed not first, second and third order indexicality, but rather nth and n+1st order

indexicality, wherein the n+1st order indexicality comes about by assigning to the nth order some
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ciolinguists operationalizing his framework typically do not attempt to define indexical

orders above the third.

Indexicality is at the heart of variationist sociolinguistic research,8 and is no less

at issue in systems of automatic speaker profiling. To the extent that such systems

are designed to recognize social divisions from speech, they are (or should be) in fact

exclusively concerned with those speech features which hold some level of indexicality.

However, as Eckert (2008a) points out, higher order indexical meanings are not as

straightforward as they are sometimes considered to be. Features instead may carry a

host of second and third order indexical meanings associated with them, the particular

meaning drawn upon at a particular point in time only becoming clear within the

specific context of the speech event. To deal with this reality, she introduces the concept

of the indexical field: “[a] constellation of ideologically related meanings, any one of

which can be activated in the situated use of the variable” (Eckert, 2008a, pg.454). In

other words, one can’t interpret the second order indexical meanings of a particular

variant without reference to who said it, who they said it to, and the context in which

it was said.

The issue of how to deal with and disambiguate higher orders of indexicality is

potentially problematic for automated profiling systems seeking to take such linguis-

tic features into account. In some ways however, the driving purpose of automated

profiling systems may allow us to abstract away from some of the problems inherent

in interpreting higher order indexical meanings. While sociolinguists are typically con-

cerned with the question “why this now,” for ASP systems it is largely irrelevant why

a speaker uses a particular variant, so long as their usage pattern of that particular

variant is correlated with some socio-demographic category. For instance, whether a

meta-pragmatic meaning according to a nativized ideological schema. In this framework it is possible
to create n + 1 + 1 … + 1 orders of indexicality ad infinitum via successive meta-pragmatic shellacking.

8Though as Eckert (2008a) points out the distinction between 1st and 2nd order indexicality is not
always respected by variationists.
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speaker uses high proportions of the velar ING variant to index formality, articulateness

or intelligence within a given speech sample is irrelevant if the speaker is an educated

female and the system has been trained to recognize that high ING/IN proportions in

concert with other observed features are indicative of educated females. That is to say,

the exact stance indicated by a variant at any given time is irrelevant so long as the

constellation of stances typically indicated by that particular variant usage pattern are

statistically correlated with sociodemographic categories. In other words, so long as

the variant maintains some socio-demographic distinction in baseline usage patterns,

the higher order indexical meanings inherent in its use are immaterial to the profiling

system. This highlights the fact that, as ASP systems are primarily concerned with pre-

dicting macro-social demographic information,9 they are more interested in first order

indexicals than any specific accompanying higher order indexical meanings a particular

variant may take on in any given situated usage.

This is not to say however that higher order indexical meanings are totally ir-

relevant to automated profiling systems. Insofar as higher order indexical meanings

associated with a variable vary group to group, and these meanings have bearing on

demographic category prediction, it is important for such systems to take them into

account. For instance, it may be desirable for a profiling system to have the ability

to weight ING/IN ratio differently when attempting to predict the education level of a

northerner vs. a southerner, or to weight the rate of expletives differently when gauging

the age of a female vs. a male. In other words, while it is beyond the scope of such

systems to take into account who the speaker was talking to and the pragmatic con-

text of the utterance, it is possible to take into account the “context” of the speaker

him/herself, and thus get at a more nuanced view of what higher order indexicals may

point to on a case by case basis. This notion dovetails with the intersectional nature
9E.g. predicting speaker sex writ large vs. predicting performance of masculine/feminine gender

roles to greater or lesser degrees within a particular conversation.
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of identity, discussed in detail in section 2.2.3, and is one of the primary motivations

for taking a Multi-Task Learning approach to speaker profiling in this dissertation, as

detailed in section 2.4.2.

2.2.3 Intersectionality

Intersectionality as a social theory was first introduced in the 1980’s and 1990’s by black

feminist scholars and others investigating gender and ethnic divisions primarily within

the realm of sociology (e.g. Crenshaw, 1989; Hooks, 1981), and has since become an

important part of the way in which social scientists across a host of related disciplines

conceptualize and approach matters related to social identity. The basic tenet of in-

tersectionality theory is that socially relevant categories (i.e. aspects of social identity)

are mutually constitutive– in other words, gender, class, ethnicity, etc. all interact

with and influence one another on a continual basis, and consequently no aspect of

social identity is formed or expressed in isolation. Social identity writ large within an

intersectional framework therefore is better considered as a synergistic, holistic web of

aspects of identity which may smear into and modulate one another rather than simply

an additive accretion of individual, isolated aspects (i.e. the whole is greater than the

sum of its parts). For example, what it means to be a black female in America cannot

simply be broken down into meanings associated with blackness, femaleness, and Amer-

icanness (Crenshaw, 1989). Likewise, what it means to be an American male in an

urban community vs. a rural community is not simply the subtraction and addition of

ruralness and urbanness– rather the concept and expression of masculinity itself along

with its associated meanings may change subtly (or not so subtly) in combination with

these and other aspects of identity (see e.g. Campbell et al., 2006).
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One of the primary benefits of considering identity from an intersectional per-

spective within sociolinguistics is the recognition that language practices as they relate

to social identity cannot be adequately considered with reference to a single aspect of

identity alone. Sociolinguists working on sexuality and gender for example have been

particularly vocal in calling for the treatment of gender to be contextualized against

the broader backdrop of race, class, socio-economic status, and other social pressures

at work within the community of study (Bucholtz, 1999; Eckert, 1989; Kirkham, 2015;

Levon, 2015). The intersectional nature of identity has particular bearing on inves-

tigations of language variation, as it is rare that a linguistic feature is affected by a

single aspect of identity alone, or that the effect of broad macro-social categories on a

particular linguistic variable will be the same community to community or population

to population. Linguists investigating variation have found over and over again that

linguistic variables tend to be simultaneously affected by a host of social features (e.g.

Eckert, 1989; Labov, 1966; Trudgill, 1974, among many others), and that markers of

a particular aspect of social identity in one community may be not be used to mark

that same aspect of identity in another community (e.g. Podesva and Van Hofwegen,

2014). In other words, as mentioned in section 2.2.2 above, the higher order indexi-

cal meanings associated with particular linguistic features may vary depending on the

backdrop of the individual speaker’s socio-demography and sociolinguistic experience.

It was partially the recognition of the intersectional nature of identity and its effects on

language variation that gave rise to the push for more ethnographically grounded, lo-

cally centered “second wave” and “third wave” (Eckert, 2012) studies within variationist

sociolinguistics.

Insofar as automated speaker profiling systems attempt to predict or uncover the

compositional social identity of a speaker, a responsibly constructed system ought to

take insight from and be constructed in reference to prevalent theories as to how social

identity is constructed/manifested in the first place. Such a grounding is not only
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desirable from a theoretical perspective, but from a practical one as well. Taking into

account the intersectional nature of identity and the multi-directional push/pull that

various aspects of identity may have on individual linguistic variables, it becomes clear

that a modular approach in which each trait is predicted independently is sub-optimal.

Such a system has for example no way of tuning its expectations for how gender might

be differentially expressed in the context of a southern speaker vs. a northern speaker if

the gender and dialect prediction tasks have no communication. A system which allows

each trait prediction task to “peek” at what other tasks are doing however, subsequently

updating its own prediction in light of what it finds, would be able to perform such

an operation– likely boosting accuracy in addition to bringing the system in line with

current social theory regarding identity. The intersectional nature of identity is the

primary motivator for taking a Multi-Task Learning approach to speaker classification

in this dissertation– a framework which will be discussed further in section 2.4.

2.2.4 Disambiguating style and sociodemography

As this dissertation is focused on the differentiation of speakers along various social

axes, it is primarily concerned with inter-speaker variation– i.e. linguistic cues and cue

combinations which reliably distinguish coherent groups of speakers. A complication

to this type of work however is that speakers themselves are not always internally

consistent. They may vary in the realization of certain features from situation to

situation, and indeed moment to moment. Enter the concept of sociolinguistic style

and stylistic variation.

The traditional Labovian view of sociolinguistic style posits that intra-speaker

variation is driven by the amount of attention one pays to one’s speech as well as the

perceived formality of a given speaking context (Labov, 1966, 1972c). Within such an
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‘attention to speech’ model, higher rates of self-monitoring and greater attention paid to

speech are typically associated with an increased likelihood of using standard, overtly

prestigious variants over non-standard variants, whereas lower rates of self-monitoring

and less attention paid to speech are associated with a decreased likelihood of using

standard over non-standard variants. Further work has demonstrated that intra-speaker

stylistic variation may, in addition to attention paid to speech, be conditioned by such

factors as topic of conversation (Rickford and McNair-Knox, 1994) and stance-taking

(Bucholtz, 2009; Kiesling, 2004), among others, and that it may be quite rapid and fine

grained (Coupland, 1980).

The phenomenon of style shifting presents a problem to those systems attempting

to predict socio-demographic categories based on short speech samples, in that many of

the linguistic features which vary during style-shifting are co-linear with features which

may be useful in distinguishing demographic categories from one another.10 That is to

say, if style is not properly controlled for, how could one tell whether, for instance, a

speaker’s high incidence of non-standard variant usage was due to using a particularly

relaxed and informal style, rather than some aspect of socio-demography which we

might also expect to be associated with high proportions of non-standard variants. in

short, if speakers within the training and/or testing data are using different stylistic

registers, style becomes a confounding variable in any analysis seeking to distinguish

sociodemographic categories from one another.11 In order to properly train a system

to detect feature differences and distinguish coherent sociodemographic groups on the

basis of these linguistic differences, clearly it is necessary to control for style as much

as possible.
10This phenomenon is in fact so pervasive and was so problematic for first-wave variationist research

that it served as the primary motivation for the development of Bell’s (1984) influential framework of
Audience Design.

11Labov (1972b) concisely characterizes this problem as the difficulty in distinguishing between the
speech of a casual salesman and a careful pipe-fitter.
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Perhaps the most obvious way to control for style is to control the speech event

from which data in the test and training corpora are drawn. Speech samples within the

corpora should, as much as possible, be drawn from the same genre of speech event, col-

lected in similar settings, and come from speakers addressing similar interlocutors. The

NIST Speaker Recognition Evaluation test/training corpora which is used for training

and testing the ASP systems constructed during the course of this dissertation (dis-

cussed in detail in chapter 3) fit these criteria quite well in most accounts. First, all

speech samples included in the NIST SRE sets come from either conversational tele-

phone speech or conversational interview speech, allowing for control of speech event

genre. In addition, all interlocutors within the NIST SRE sets are strangers to one

another, eliminating any confounding effect of variable interlocutor familiarity. The

NIST SRE sets do leave something to be desired however, as the interlocutors with

whom the speaker of a speech sample was talking were not kept constant (although

they were consistently strangers to one another). This introduces a confound of speech

accommodation, in that speech samples from two speakers who are demographically

identical may have been drawn from conversations with interlocutors who differ greatly

in their variant usage, prompting different levels of accommodation and therefore differ-

ent linguistic feature configurations from two speakers who might otherwise be expected

to behave quite similarly in terms of linguistic feature configuration. Furthermore, the

speech events from which the NIST SRE data were drawn were not controlled for topic,

introducing another potential confounding variable.

Aside from controlling the speech event as far as possible (though it must be

recognized that it is relatively impossible to control for all potential confounding factors

between two speech events), a further strategy for mitigating the confounding influence

of style shifting is to train the system on a large volume of data. The more data the

system is trained on, the lower the effect of any random noise introduced via style-

shifting in any one particular speech sample. Again the NIST SRE data sets used
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for training and testing the ASP models developed during this dissertation satisfy this

criteria, comprising 1,169 five minute telephone conversation recordings (97.4 hours of

speech in total) from 454 unique speakers.

2.3 Sociodemographic Categories of Focus

This dissertation attempts to classify speakers along the following sociodemographic

axes:

1. Sex
2. Age
3. Region
4. Ethnicity
5. Education

While traits 1 and 2 have both a social and a biological component, traits 3-5 are

wholly social. The first three traits have been extensively examined in previous ASP

studies, enabling comparison of the current methodology to previous work. Traits 4 &

5 however have, to the best of my knowledge, only been incorporated into work on ASP

by Gillick (2010), who used exclusively lexical features as predictors. Investigation into

which types of features contribute most to accuracy of speaker classification along traits

4 & 5 thus represent a novel contribution of this dissertation to the field of automated

speaker profiling (though work has been done on classifying authors according to these

traits using text-based corpora).

What follows is a short overview of each of the sociodemographic traits of focus

identified above, addressing some of the issues inherent in their operationalization in

an ASP system, and briefly touching on the relevant sociolinguistic literature. For an

exhaustive list of the predictive feature set used to classify speakers in this dissertation,

see chapter 3.

25



2.3.1 Sex

Gender is perhaps the most widely studied of all social traits within sociolinguistics other

than region. While in most “first wave” early variationist work gender was treated as

a binary variable coinciding with biological sex, within the last few decades researchers

working on gender and language have made a push for a contextualization of this vari-

able, recognizing that gender is not a property one “has,” but rather a thing one “does,”

and thus not entirely coincidental with biological sex (e.g. Eckert and McConnell-Ginet,

1999, 2003). Likewise there has been a flurry of recent work investigating language in

relation to transgender individuals in a non-binary context (e.g. Brown, 2011, 2015;

Hazenberg, 2012). While recognizing the complex nature of gender, ASP systems in

practice are typically aimed at the prediction of binary gender.12 For this reason, this

subsection focuses specifically on sociolinguistic variables as they relate to the binary

expression of speaker sex.13

It is important to note here that while many of the (particularly acoustic) lin-

guistic variables studied in relation to gender have a biological basis for differentiation,

sociolinguistic investigation into the usage of these variables has often shown that their

realization is manipulable as a resource in performing gender identity. Thus, the lin-

guistic expression of sex is at once both biologically and socially based. Fundamental

Frequency (F0) is a prime example of this. Because males typically have thicker and

longer vocal folds than do females (Simpson, 2009, pg. 622), and the male larynx is ap-

proximately 50% larger on average than the female larynx (Podesva and Kajino, 2014,

pg. 104), males’ vocal folds tend to vibrate more slowly during speech than do females’,
12Though the prediction of non-binary gender and sexual orientation is an interesting area for future

research in this field
13I use the term “sex” rather than “gender” throughout this dissertation when referring to partici-

pants of the NIST SRE 2008 corpus as this is the term present in the corpus metadata and presumably
therefore the term used by corpus collectors in asking speakers to identify themselves with respect to
this category.
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resulting in a lower average fundamental frequency. While there is a biological basis

for sex differentiation in average F0, many studies have provided evidence that these

biological differences have been mapped on to stereotypical conceptions of masculinity

and femininity (i.e. have taken on higher order indexical meanings), above and beyond

biology, and that consequently F0 may be drawn upon as a linguistic resource by speak-

ers in constructing and performing (gender) identity. For instance, the magnitude of

difference in fundamental frequency between men and women has been shown to vary

cross-culturally, despite a lack of corresponding cross-cultural variation in the magni-

tude of sexual dimorphism between males and females. This indicates that speakers

in different cultures may enhance or minimize the natural F0 difference between men

and women to varying degrees. Yuasa (2008) for example found that the difference in

average F0 for male and female Japanese speakers is significantly wider than the range

for male and female American English speakers (mostly due to rather high average

F0 values for Japanese females— which Yuasa hypothesizes may result from the inor-

dinately high esteem which Japanese women place on femininity). Differences in F0

between sexes have also been shown to exist in prepubescent children, despite the fact

that the sex-based physiological differences typically linked to difference in F0 don’t

emerge until after puberty (e.g. Graddol and Swann, 1983). Findings like these repre-

sent solid evidence that, even in the absence of any meaningful physical difference, F0

can be manipulated to invoke and reproduce the dominant gender stereotypes of the

community.

A number of studies have investigated phonetic correlates to speaker gender. Of-

ten for binary phonetic variables, females will tend to exhibit higher ratios of the ‘stan-

dard’ or ‘overtly prestigious’ variant. Labov’s (1966) classic study of New York City

English for example found that females tended to realize the standard rhotic variant of

coda-/ô/ and the standard non-stopped variants of th/dh more frequently than males

in many social classes. Likewise Trudgill’s (1974) study of Norwich English showed
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females with consistently higher usage of the standard velar variant of the ING variable

than men across all social classes. Not only do females tend to use higher ratios of

standard variants, they also have been shown quite consistently to lead incipient sound

changes taking place within communities. For instance, females tend to have more

progressive vowel realizations in most of the major vowel shifts in the United States de-

scribed in the literature (e.g. Baranowski, 2008; Hall-Lew, 2005; Kennedy and Grama,

2012; Labov, 2001; Ward, 2003). Given this, some metric of standard/non-standard

phonetic variant ratio and the degree of advancement of known sound changes may

be useful in an automatic system attempting to predict speaker gender. There is also

evidence that, in addition to leading vowel shifts, females tend on average to produce

longer vowels and have larger vowel spaces than do males (Munson, 2007; Neel, 2008;

Simpson and Ericsdotter, 2007), suggesting that some measurement of vowel dispersion

and average duration may also be useful in automated speaker profiling.

In addition to differences in the phonetic realm, there is a growing body of re-

search investigating gender-based differences at the lexico-syntactic level. Cheshire

(2005) for example describes robust gender differences in the way that discourse-new

entities are syntactically flagged for adolescents, and a number of studies have pointed

to gender-based differences within the quotative system (e.g. Barbieri, 2007; Blyth et al.,

1990; Tagliamonte and D’Arcy, 2004). Likewise Mondorf (2002) describes significant

gender-based variation in the use of finite adverbial clauses, causal clauses, postposed

conditional clauses, purpose clauses, and concessive clauses in addition to an overall

female preference for postposed clauses and a male preference for preposed clauses. Re-

cent computational and corpus work has also revealed substantial differences in the

frequency with which males and females use different parts of speech. Johannsen et al.

(2015) for example demonstrates a correlation between males and the use of nouns, im-

personal pronouns, and numerals, and a similar correlation between females and higher

rates of personal pronoun usage. They also found correlations between gender and
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preference for certain universal dependency relations.

Evidence for gender-based variation at the discourse level seems somewhat mixed.

Though early researchers postulated gender differences for things like degree of hedging

(e.g. Lakoff, 1975) and positive/negative affective stance (e.g. Anderson and Leaper,

1998), more recent corpus work suggests that these earlier findings largely do not hold

or were likely the product of topic variation which was not properly controlled for

(Bayard and Krishnayya, 2001; Precht, 2008; Thomson, 2006). One of the stereotypes

about men’s and women’s language at the discourse/lexical level that does appear to

hold however is the higher use of expletives by men (Precht, 2008).

2.3.2 Age

Throughout the sociolinguistic literature, age is largely treated as a mechanism for

detecting language change over apparent time. Relatively few studies have examined

age from the point of view of a sociolinguistic variable in its own right (Barbieri, 2008;

Eckert, 1997), though researchers have long noted that diachronically stable sociolin-

guistic variables may exhibit age-grading across the lifespan (Labov, 1994). From the

point of view of an ASP system, it’s largely irrelevant whether differences seen across

age groups are the result of diachronic language change or stable age-grading, so long

as the differences reliably separate age groups (and contemporaneous training data is

available).

More pressing is the question of how to operationalize age. In sociolinguistic

studies of age, researchers typically bin speakers into discrete age-groups (e.g. 15-30,

30-45, etc.). One problem with this binning technique is that the number of bins varies

widely from study to study, making cross-study comparisons difficult. Furthermore,

the motivation behind the construction of these bins is not often clear. Bins may
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attempt to roughly delineate generations, life-stages, or may simply be dictated by

the idiosyncrasies of the data at hand. Treating age as a linear variable also has

its challenges, as often a researcher will either have not enough data or not enough

dispersion within the data to merit such a treatment. Further complicating the matter

is that, as Eckert points out, “…chronological age can only provide an approximate

measure of the speaker’s age-related place in society” (1997, pg. 155). For this reason

Eckert and others have suggested that life-stage rather than biological age should be

taken as the locus of age-based variation (though the operationalization of ‘life-stage’

is no less fraught). Because measures of life-stage are not typically available in large,

spoken-data corpora, my treatment of age in this dissertation will focus on chronological

rather than social age. Details on how age is operationalized within this dissertation

are available in chapter 3.

Much of the evidence for phonetic and phonological age-based variation in Amer-

ican English comes from studies investigating changes in progress. Most of this work

centers around shifts within the vowel system. For instance, younger speakers have been

shown to exhibit more fronted back-vowels (Hall-Lew, 2011) and more retracted and

lowered short front vowels (Kennedy and Grama, 2012) in the California Vowel Shift.

Likewise younger speakers lead the fronting of back vowels in the Southern Vowel shift,

along with the near reversal of the tense and lax front vowels (Fridland, 2001). Younger

speakers also lead the raising of /æ/ and all accompanying vowel re-arrangements de-

scribed by Labov et al. (2006) as the Northern Cities Shift.14 Jacewicz et al. (2011)

describe a more general sound change across the United States wherein younger speak-

ers lead the lowering and retracting of the short front vowels /I, E, æ/, which they dub

the North American Shift. It appears that in concert with dialect-region identification,

the relative position of back and short front vowels may be an important indicator of

speaker age in the profiling systems constructed in this dissertation.
14Though some recent work has suggested this trend may be reversing. See e.g. Wagner et al. (2016)
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Investigation into stable age-grading also provides insight into what phonetic vari-

ables to pay attention to in predicting speaker age. Labov (2001) for example has

demonstrated that the stable ING variable (discussed above) tends to show a curvilin-

ear pattern across life-stages, with usage of the non-standard IN variant peaking in late

adolescence and then gradually retreating as speakers enter the workforce. Chambers’

(2003) discussion of ‘retrenchment’ suggests that this pattern of post-adolescent back-off

(potentially followed by post-retirement resurgence as speakers leave the workforce and

are no longer subject to the same type of linguistic-marketplace-induced pressure) may

be common for non-standard linguistic features. Although relatively little work has yet

investigated this claim, Rickford and Price (2013) provide evidence for just this sort of

post-adolescent back-off for morphosyntactic features in the speech of African-American

females, indicating that standard/nonstandard variant ratios may be a fruitful indicator

of age for profiling systems across multiple linguistic levels. Tagliamonte and Baayen

(2012) has also demonstrated that non-standard was/were regularization in York En-

glish exhibits the type of u-shaped curve associated with post-adolescent back-off and

subsequent post-retirement-age resurgence. Additionally, Barbieri (2008) in her analy-

sis of the Longman American Corpus provides evidence that non-standard lexical items

(e.g. taboo words, profanity, slang) are significantly more prevalent in the speech of

younger speakers (age 15-25) than older speakers (age 35-60).

A small number of studies have also examined age-based differences at the dis-

course and lexical levels. Stubbe and Holmes (1995) for example found that younger

speakers in the Wellington Corpus of New Zealand English favored set marking tags15

at roughly twice the rate of middle aged speakers, while middle aged speakers tended

to use the discourse markers sort of/kind of and I mean/I think at nearly twice the

rate of the younger speakers. Likewise, Barbieri (2008) in her investigation of the
15I.e. phrases indicating membership in a more general category; e.g. “… and stuff like that,” or

“…and whatnot.”
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Longman American Corpus found that speakers in her younger and older age groups

favored different subsets of affective markers, stance adverbs, intensifiers, and response

tokens, and that the younger speakers (somewhat surprisingly) use politeness markers

(e.g. sorry, please) significantly more frequently than the speakers in her older age group.

The age-based difference in usage of stance adverbs and intensifiers is particularly pro-

nounced, and has also been noted by Ito and Tagliamonte (2003) and Xiao and Tao

(2007). It seems from these investigations that the inclusion of discourse marker, stance

adverb, and intensifier distributions may be of some use to ASP systems in predicting

age group.

2.3.3 Region

Regional dialect has undoubtedly received the most attention to date of any of the social

traits listed in this section. The scope on which one can examine regional dialect runs

the gamut from the level of nations (e.g. American vs. British English) to individual

social networks distributed across different city-block groupings within the same town

(e.g. Milroy, 1980). As the goal of this dissertation is to construct a speaker profiling

system for American English, I will focus my discussion here on broad, sub-national

geographic regions of the United States. The Atlas of North American English (ANAE;

Labov et al., 2006) divides the United States into roughly 10 distinct major dialect

areas:

1. West
2. North Central
3. North (subdivided into North and Inland North)
4. Midland
5. South (subdivided into South, Inland South, and Texas South)
6. Western PA
7. Mid-Atlantic
8. New York City
9. Western New England
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10. Eastern New England

These dialectal divisions are based primarily on acoustic analysis of the vowels of

speakers interviewed as part of the TELSUR project. Roughly, the divisions are based

on relative backing, fronting, lowering, raising, and merging of certain vowels indicative

of the various sound changes in progress in different regions of the US, as well as glide

trajectories and contextual realizations such as the split-/æ/ system. For the purpose of

automated speaker profiling however, these geographical distinctions are typically too

fine grained to be of use given the amount of data present in spoken-language corpora

and the level of metadata available on regional speaker origin. For the purposes of

this dissertation, the dialectal divisions of the ANAE will be condensed into a four-way

regional classificatory schema (Northeast, South, Midwest, West) corresponding to the

U.S. regional mapping used by the Census Bureau. This approach to regional division

has the benefits that a) the regions are well defined and do not require a level of speaker

metadata below the state level, and b) this regional division schema is comparable to

that used by similar existing work in speaker profiling (e.g. Gillick, 2010) and thus

enables direct cross-study comparison of results.

It seems likely that phonetic analysis of the key vowels relating to the ANAE

dialect regions that correspond to the U.S. Census Bureau regions would prove fruitful

in distinguishing speaker region of origin. Such vowel differences are likely the driv-

ing discriminatory factor in the high dialect-identification accuracy that Biadsy et al.

(2011) achieves with the phone-type supervector approach described above. Interest-

ingly though, none of the work I have been able to find in automated profiling of speaker

dialect region to-date attempts to take into account the types of glide trajectory and

contextual features detailed in the ANAE. Accounting for such features may result in a

significant improvement in regional classification, particularly for speakers from regions

primarily distinguished from one another on the basis of these features, such as the
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South for glide trajectories and various regions of the Northeast for split-/æ/ systems.

There is unfortunately no comprehensive work detailing consonantal differences

between geographical regions of the US, but there exist in the literature a description

of a few consonantal features potentially useful for dialect classification. /ô/-lessness

for example may be of use in distinguishing certain regional dialects along the eastern

seaboard (Wolfram and Schilling, 2015). There is also some limited evidence that the

degree of closure and voicing in stop consonants may be useful in distinguishing dialect

regions with some German substrate influence from other regional varieties (Jacewicz

et al., 2009; Purnell et al., 2005).

In addition to phonetic variation there is also of course a great deal of regional

lexical variation, and a number of studies have demonstrated the feasibility of mining

certain lexical alternations or n-gram features for the prediction of dialect region for

author profiling tasks (e.g. Cheng et al., 2010; Eisenstein, 2015; Wieling and Nerbonne,

2010). Gillick (2010) is one of the few studies to predict dialect region using lexi-

cal variation in spoken data. He demonstrates that training a Margin Infused Relaxed

Algorithm (MIRA) classifier using simple bigram feature vectors extracted from conver-

sational speech resulted in classification of speakers in a four-way dialect categorization

task with a relatively high degree of accuracy (56-70% accuracy for Northeast, South,

and West regions, 38% accuracy for the Midwest), suggesting that such an approach

may prove a useful component in the profiling system proposed here.16

Regional variation has also been demonstrated in the morphosyntactic realm. One

particularly obvious example of such regional variation is the way in which speakers
16While dialectologists tend to focus on semi-salient, specific lexical alternations such as firefly

vs. lightning-bug, soda vs. pop, etc., Gillick (2010) and others cited in this paragraph do not place any
specific importance on saliency or use alternation lists generated from surveys of dialectology work.
Rather, they select n-gram features based on statistical analysis of the data (often via information
gain or mutual information ranking). As a result these n-gram features tend to contain more discourse
markers, pause fillers, and other frequent lexical items and less of the specific (and typically more rare)
content lexemes on which traditional dialectology has focused.
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from certain regions produce the 2nd person plural pronoun. Whereas the 2nd plural

pronoun ‘you’ does not differ from the 2nd singular pronoun in ‘standard’ American

English, speakers from the Pittsburgh area are well known for their local variant form

‘yins’ or ‘you-uns’ (Johnstone et al., 2006; Johnstone and Kiesling, 2008), speakers of

southern varieties tend to favor the elided form ‘y’all’ (Richardson, 1984; Wales, 2004),

and speakers from the mid-west may adopt variable you/yous (Wales, 2004). Likewise

the propensity for double modal usage and a-prefixing (as in she’s a-comin’ home)

in southern dialects (though rarely elsewhere) is well documented (e.g. Wolfram and

Schilling, 2015, pgs. 378-379). Many such regional-specific syntactic constructions are

rare however (with the exception of the 2nd plural pronoun), and so their utility to the

project at hand may be limited.

Finally, there is also evidence of regional variation at the discourse level. Tannen’s

(1984; 2000) work on conversational style for example suggests that speakers from

different regions may have different norms when it comes to speaking rate and length

of intra- and inter-turn pauses– a finding confirmed by Kendall’s (2013) sociophonetic

corpus work. It may therefore be useful to include some measurement of speech rate

and pause length for regional classification.

2.3.4 Ethnicity

Ethnicity is a particularly tricky trait to handle. First, it should be made abundantly

clear that there is scant if any evidence for physiological differences between ethnicities

in terms of the vocal apparatus. The only study of which I am aware attempting to

scientifically investigate morphological differences in the vocal tract is Xue et al. (2006),

who used Acoustic Reflection to measure the oral length, pharyngeal length, total vocal

tract length, oral volume, pharyngeal volume, and total vocal tract volume of male
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speakers from three different ethnicities in America: African Americans, White Amer-

icans, and Chinese Americans. They found no significant differences between African

Americans and White Americans in any of the six measurements tested, but found

significantly larger oral volume and total vocal tract volume for Chinese Americans

as compared to the two other groups. While they suggest this is due to an underly-

ing physiological difference between Chinese Americans and the other two groups, it

should also be noted that while African Americans and White Americans spoke Amer-

ican English during their tests, Chinese Americans spoke Mandarin. It’s possible that

language difference was the driving factor behind their significant results rather than

physiological differences tied to ethnicity. I will proceed from the standpoint that any

linguistic differences between ethnicities are not a reflection of underlying physiological

differences, but are rather due to differences in ethnolect or ethnolinguistic repertoire.

The term ‘ethnolect’ has been used in rather different ways over the years. The

canonical definition of an ethnolect is a “[variety] of a language that [marks] speakers as

members of ethnic groups who originally used another language or distinctive variety”

(Clyne, 2000, pg.86). Others have problematized this idea of the ethnolect however,

pointing out that one does not need to be of a particular ethnicity to speak the ethnolect

associated with that ethnicity, and that constructing ethnolects in opposition to the

standard can serve to marginalize speakers of that ethnicity (Jaspers, 2008). Some have

also argued that talking about groups of dialectal features associated with ethnicities as

discrete ethnolects insinuates that such feature groupings are monolithic, ignoring the

inherent variation of feature usage that occurs within any sociolect and the interplay

that may occur between these features and various higher order meanings within the

indexical field. As Eckert puts it:

“…not only can the notion of ethnolect serve to reinscribe popular ideologies,

it also belies the constructed nature of linguistic varieties and of social (in
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this case ethnic) categories. The term ethnolect (like sociolect and the more

generic dialect) reflects a view of language as a fixed rather than fluid entity,

and of identity as compartmentalized, allowing one to think of an ethnolect

as a discrete system indexical of ethnicity alone.”

— Eckert (2008b), pg. 26

For convenience’s sake, I will use the term ethnolect in a loose sense to mean those

dialectal features which are correlated with a particular ethnicity, bearing in mind of

course that these features may index other social meanings, and that not all speakers

who identify as members of a particular ethnicity will necessarily use these features

to index their ethnicity. I will confine my discussion to literature referring to the four

ethnicities which make up the largest percentage of the population of the United States

according to the latest census statistics: White, Latino, African American, and Asian

(Humes et al., 2011, pg. 4).

Before continuing I would like to note that much of the work on ethnolects sets

ethnolectal features in opposition to “standard” American English, and treats white

speakers largely as the default “standard” category. There is an underlying assumption

that whiteness represents a lack of ethnicity, and that correspondingly any retreat by

speakers from their own ethnic varieties represents a corresponding retreat from their

ethnicity.17 This framing of whiteness as the default is unfortunate, and I will attempt

to minimize such framing as much as possible in the discussion below.

There is a rich literature examining the group of varieties known collectively as

African American (Vernacular) English (AAE). AAE is traditionally characterized by

a constellation of non-standard morphosyntactic features such as copula deletion, neg-
17White speakers of course also have their own ethnolects, though Anglo varieties are nearly always

described in the literature as regional varieties rather than ethnolects (Eckert, 2008b, pg. 27)
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ative concord, invariant (habitual) be (and other aspectual markers), absence of the

-s morpheme in 3rd person singular, possessive, and plural constructions, and so on

(Green, 2002; Labov, 1972a; Rickford, 1999). Various phonetic phenomena have also

been linked to AAE, such as consonant cluster reduction, th/dh-fronting, /ô/-lessness,

and merging of the /I/ and /E/ vowels (Green, 2002; Rickford, 1999). Interestingly,

African American speakers also appear generally resistant to vowel shifts occurring

among the general (read: “white”) populace of the area in which they live (see e.g.

Labov et al., 2006). Green (2002) also describes a number of lexical items associated

with the use of AAE, though most of these are not exclusive to speakers of AAE. This

is of course a rather brief synopsis of features indicative of AAE, and as Yaeger-Dror

and Thomas (2010) note, AAE is not monolithic– regional and social variation exist

within this variety, and different speakers may vary in terms of exactly which of these

features they choose to use and to what extent they deploy them.

Comparatively less has been written about the linguistic features associated with

English speakers of Hispanic/Latino descent, and while many of the features charac-

teristic of AAE are common to AAE speakers throughout the United States (albeit

at different rates or in different configurations), the generalizability of findings from

studies of Hispanic English speakers from one region to another is less well established.

Chicano English (CE) spoken in the American southwest is by far the most studied va-

riety of English associated with speakers of Hispanic descent. Fought (2003) describes

some distinctive aspects of the phonology of Chicano English, noting a marked ten-

dency for the non-reduction of vowels in unstressed syllables (e.g. [tugED@ô] rather than

[t@gED@ô]), a general lack of gliding, particularly in the high vowels /i, u/, and a partic-

ularly tense realization of /I/. She also notes a variable tendency among the speakers

she studies to realize /A/ as /a/, and to front /U/ to /1/. As with AAE (and many

other non-standard English varieties), Fought also notes a tendency for CE speakers to

realize the interdental fricatives as apical stops, reduce consonant clusters, and to glot-
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talize word-final voiceless stops. Likewise Fought finds that CE speakers tend to use a

variety of morphosyntactic features common to other non-standard varieties, including

negative concord, generalization of was/were for use with plural subjects, and the use

of non-standard pronoun forms (e.g. ‘hisself’). Interestingly, Fought also notes a few

morphosyntactic features which appear particular to CE, including certain patterns of

non-standard prepositional and modal usage. Bayley and Santa Ana (2004) also note a

number of morphosyntactic features characteristic of Chicano English in the southwest,

including absence of the past tense -ed suffix, absence of 3rd singular -s, and the variable

absence of direct objects. Prosody may be of particular use in distinguishing speakers

of CE (and perhaps other ethnolectal dialects associated with those of Hispanic origin),

as Fought (2003) also describes a particularly marked phrase-final rise-and-sustain and

rise-and-fall intonation pattern common to this variety.

It is not established exactly how well features described in Chicano English, which

is primarily influenced by Mexican Spanish, might generalize to speakers of Hispanic

ethnolectal varieties in other parts of the country which have been influenced by other

varieties of Spanish. However, emerging research on Hispanic English varieties in the

American southeast (primarily around North Carolina) generally agree with the pho-

netic and morphosyntactic patterns found in Chicano English (see e.g. Callahan-Price,

2013; Kohn, 2008). It seems reasonable therefore to use the detailed descriptions of

CE as a jumping-off point for identifying linguistic features which may index Hispanic

ethnicity.

So far as I’m aware, no one has undertaken a comprehensive study of Asian eth-

nolectal varieties as Fought (2003) and Green (2002) have done for Chicano English

and African American English, respectively. Some have in fact argued that because of

the incredibly diverse ethnic and linguistic backgrounds of those lumped together in the

category of ‘Asian American’ (e.g. Korean-Americans, Chinese-Americans, and so on),
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such an endeavor is likely doomed to fail from the start (e.g. Wong and Hall-Lew, 2014).

There are however a few studies from which we may draw some distinctive features used

to mark Asian ethnic identity. Newman and Wu (2011) for example demonstrate that

Chinese- and Korean-American speakers in their study use a significantly ‘breathier’

voice quality than Latino, African American, and European American participants.

Likewise they find that the Asian-American speakers also exhibit longer voice onset

time for voiceless stops, and lower realizations of /E/ and /ô/ than participants of other

ethnicities. Newman and Wu posit that these features, while not necessarily compris-

ing an Asian-American ‘ethnolect,’ may nonetheless comprise part of an ethnolinguistic

repertoire (Benor, 2010) from which these speakers draw to index their ethnic identity.

In addition, Bauman (2014) has described a particularly backed and monophthongal

/o/ realization in the speech of Asian American sorority members in New Jersey as com-

pared to their white counterparts, which she suggests may function as a marker of Asian

ethnic-identity. Interestingly, Kirtley et al. (2016) find a similarly backed and monoph-

thongal /o/ vowel to be distinctive of Hawaii English, a variety spoken in a region in

which the majority of speakers are of Asian descent (though they do not specifically

compare the speech of different ethnic populations within Hawaii to one another). Fi-

nally, Hall-Lew (2009) suggests that Chinese-Americans may lead European Americans

in the vocalization of /l/, and Wong (2007) presents evidence that Chinese-Americans

in New York resist the short-/ae/ split common to European American varieties of New

York City English. While a great deal of inter-speaker variability is noted in most of

the studies cited here, these features may nonetheless represent a possible starting point

for identifying linguistic features potentially indicative of Asian ethnicity in the disser-

tation at hand. So far as I’m aware, all studies of ethnolinguistic features associated

with Americans of Asian descent have focused on acoustic and phonetic features– there

is no evidence of which I’m aware suggesting corresponding morphosyntactic or lexi-

cal features associated with Asian ethnicity, other than the propensity for some young
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speakers to adopt features of AAE as a means for constructing a non-white identity

(e.g. Bucholtz, 2004; Chun, 2001).

The material in this section provides a brief overview of the major findings for

ethnolinguistic differentiation among Hispanic, African American, and Asian-American

speakers. Before closing this section, it is important to point out again that many

of the features associated with the ethnolectal varieties described above are shared

among many non-standard dialects across America, such as negative concord and the

generalization of is/was to plural subjects. It is therefore not the presence of these

individual features per se that should be taken as indicative of a particular ethnolect

and by proxy ethnicity, but rather the particular configuration and rates in which they

appear.

2.3.5 Education

Of the five social traits of focus for this dissertation, Level of education is by far the least

studied and consequently the least well understood in terms of which speech features

may be indicative or discriminative. Most of what is known about speech features

that may be tied to education comes from linguistic work focusing on education as

a foundational aspect of socioeconomic class rather than work focusing on education

level itself. Education and SEC are intricately linked, and often co-linear to some

degree. Those with higher levels of education also tend to belong to higher socio-

economic classes (and vice-versa), and likewise those features which have been found to

be associated with higher education levels have also been associated with higher SECs.

Often in fact, level of education is one of the key contributing factors in determination

of SEC (e.g. Labov, 1966; Trudgill, 1974).
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From the sociolinguistic realm, much of the work examining education and SEC

has been based on the notion of standard/non-standard feature ratios. Higher educa-

tion and SEC levels have been repeatedly linked to higher ratios of standard linguistic

variants in cases of stable linguistic variation. Labov for instance found that SEC

(and consequently education) level clearly delineated speakers with respect to coda-/ô/

and th/dh production, with those in the higher classes consistently producing higher

standard/non-standard realization ratios across all styles for both variables (1966, pgs.

221-222). Likewise Trudgill (1974) found that speakers in higher socio-economic classes

reliably produced higher ratios of standard (velar) to non-standard (alveolar) variants

of the ING variable. This production difference appears in some cases to have lead to

a higher order indexical association between the standard variant and high levels of

SEC and/or education. Campbell-Kibler (2006) for instance has found that listeners

in a perception study strongly associated guises using the standard velar variant of

ING with being both wealthy and educated. This pattern of social class differentiation

among standard/non-standard variants is not confined to phonetics either– Wolfram

(1969) for example found a similar pattern in which frequent use of negative concord

were correlated with lower social classes in the speech of African American English

speakers from Detroit.

Education tends to be notoriously difficult for human forensic speaker profilers to

get right. Schilling and Marsters (2015) report that some professional forensic linguists

and criminal profilers with whom they are in contact have noted that it is not uncom-

mon for a speaker or author to have great facility with “educated language” despite

having relatively little formal education, and have consequently suggested that attempt-

ing to predict education level should be done with extreme caution, if at all. While

this speaks to the potential difficulty of estimating education level in an automated

speaker context, it also makes it an interesting and potentially worthwhile subject of

exploration. Unfortunately, as Nguyen et al. (2013) note, very little attention has
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been paid so far to the investigation of education level or SEC within the realm of

computational (socio)linguistics. As far as I’m aware, the only study so far which has

attempted to predict education level from American English spoken language data is

Gillick (2010), who achieved 67% unweighted accuracy in identifying education level

operationalized as a four-way binned classification problem. However, some recent work

within sociophonetics has demonstrated that level of education (and indeed even the

degree to which the educational institutes attended are locally vs. nationally oriented)

may have a demonstrable effect on the degree to which speakers participate in local

dialectal phenomena. See e.g. work by Prichard and Tamminga (2012) and Fisher et al.

(2015) for a discussion of such effects of education on realizations of the Philadelphia

short-a system. This speaks to the importance of including education as a jointly mod-

eled social strait when designing a speaker profiling system aimed at predicting region

(and likely other social traits), and hints that features related to vowel production and

other local dialectal phenomena may hold some power in education prediction tasks.

2.4 Computational Foundations

In this section I discuss a few of the key computational and machine learning concepts

used in the automated speaker profiling models discussed in chapters 5 and 6. I begin

with a brief overview of neural network architecture in general. Following this, I discuss

the operationalization of a multi-task learning framework within the context of neural

networks, and detail some of the benefits that multi-task learning can provide when

dealing with multiple related prediction tasks such as those integral to this dissertation.
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2.4.1 Neural networks overview

An in depth discussion of all possible types and parameters of neural networks is beyond

the scope of this section. I will instead focus here on a bird’s eye view of the basic

components and functions underlying the most common neural network designs, with

an eye to making the technical discussions in the following chapters more accessible to

less technically-inclined audiences.

All neural nets are at heart made up of a number of interconnected yet individual

processing nodes (i.e. ‘neurons’). While each individual node is relatively uncompli-

cated, functioning in unison these groupings or ‘nets’ of nodes can be harnessed to

solve highly advanced classification problems which cause difficulty to traditional algo-

rithmic approaches. I’ll start by discussing the basic anatomy of an individual node,

then proceed to a discussion of how these nodes are organized into groupings, or ‘layers’,

designed to perform specific functions within the net at large. The basic architecture of

a neuron is best exemplified by explaining the inner workings of a single-input neuron.

A diagram of such a neuron is presented in figure 2.1 (reproduced from Hagan and

Demuth, 1995, pg. 38).

The output of a neuron a is determined by the application of an activation func-

tion18 f() to the sum of the product of the scalar weight w and the scalar input p

plus the bias b (in figure 2.1 the bias is 1). In mathematical notation therefore, the

output of a single input neuron can be represented by the equation a = f(wp + b). The

output of a neuron with an input of 4, a weight of 5 and a bias of 1 therefore would

be calculated as a = f(4 ∗ 5 + 1), or f(21). The actual output a depends upon the

type of activation function used. Activation functions come in many different flavors

(popular activation functions include the sigmoid, tanh, and ReLU functions), and the
18Sometimes the activation function is referred to as a ‘transfer function’
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Figure 2.1: Single input neuron

choice of activation function will depend on the type of problem at hand. The weight

roughly corresponds to the ‘synaptic strength’ of a biological neuron, and modulates

the threshold at which the neuron will become activated. Both w and b are typically

adjusted by a learning rule such that the input/output relationship of the neuron meets

a specific goal. In practical applications, it is more common to use multiple-input neu-

rons. Multiple-input neurons function much the same as single-input neurons, except

that instead of a scalar the input is now a vector of length R (R = number of scalar

inputs), and instead of a scalar weight w a weight matrix W composed of R columns

is used.

It is uncommon for a single neuron to be sufficient for real-world tasks. Often

groups of neurons operating in parallel are used instead. These groups are called ‘layers.’

A diagram of a typical neuron layer is presented in figure 2.2 (reproduced from Hagan

and Demuth, 1995, pg. 44). In a neuron layer, each element pi of the input vector

is connected to each neuron through the weight matrix W (which now has S rows, S

corresponding to the number of neurons in the layer. Each neuron uses its corresponding

row Si in the weight matrix). Each neuron has its own bias element bi within the bias
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Figure 2.2: Multiple input neuron

vector and its own output ai. It is not uncommon for a neural net to be composed of

multiple layers, each successive layer taking as its inputs the outputs of the previous

layer, depending on the task at hand. Multi-layer networks are particularly powerful.

Whereas single-layer networks typically are only capable of classifying linearly separable

patterns, multi-layer networks may be used for arbitrary classification problems and

can serve as universal function approximators (Hagan and Demuth, 1995, pg. 397). In

multi-layer nets, the layer whose output is also the network output (i.e. the final layer)

is termed the ‘output layer,’ and layers in between the output layer and the input layer

are called ‘hidden layers.’ For classification tasks, if the desired output is binary (1

or 0), a single neuron using a binary activation function can be used in the output

layer. In multi-class prediction tasks, often the output layer will consist of a number

of neurons corresponding to the number of possible classes, each using some sort of

sigmoid activation function. In these cases the outputs of each neuron in the output

layer may be interpreted as class probabilities.
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Training a neural network involves presenting the net with multiple examples of

input data and updating the weight and bias matrices according to a learning rule (also

called a ‘training algorithm’). Learning rules fall into 3 general categories: supervised,

reinforcement, and unsupervised. For supervised learning, the net is presented with a

set of input examples and desired outcomes, or ‘target outputs.’ Supervised training

algorithms compare net outputs to target outputs, and update the weight and bias

matrices accordingly. Reinforcement learning is much like supervised learning, except

that rather than being provided with specific target outputs, the net outputs are instead

given a grade or score according to how well they match desired network performance.

In unsupervised learning the training algorithm is not provided with any target output

or grade/score, but instead updates the weight and bias matrices solely on the basis of

network inputs. Unsupervised algorithms all use some type of clustering operation to

categorize the input into a finite number of classes.

For supervised neural nets of the type that are used in this dissertation, the stan-

dard training algorithm used to update the weight matrix is called ‘gradient descent.’

Briefly, gradient descent is an optimization function designed to iteratively tweak the

parameters of a model in order to minimize an error function.19 First the derivative

(or ‘gradient’) of the error function is calculated using the network output based on the

current model parameters. This error gradient is then propagated backwards through

each successive layer of the network in order to determine the gradient of the error func-

tion with respect to each connection weight in the weight matrix, essentially assigning

a proportional degree of ‘blame’ to each neuron in the network (propagation of the

error gradient backwards through the network is referred to as back-propagation, or

backprop for short). Once the gradient of the error function is computed with respect

to each connection weight, the weight matrix W is updated in the opposite direction of
19The error function estimates the degree of error between current model output and target model

output. Which error function one uses will be specific to network design and data
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the error gradient ∇W Error(W ) in a step proportional to the learning rate η:

W t+1 = W t − η · ∇W tError(W t)

The learning rate controls the speed with which the network converges on an

error minimum, and can have detrimental effects if improperly calibrated. Too large a

learning rate will cause the algorithm to overshoot the error minimum and diverge. Too

small a learning rate will necessitate an excessive number of training iterations before

converging.

Network training takes place over several successive cycles through the training set,

or ‘epochs.’ How often the weight matrix is updated during an epoch depends on which

flavor of gradient descent one uses. Networks trained using stochastic gradient descent

(SGD) perform a weight matrix update after every training example encountered. On

the other end of the spectrum is batch gradient descent, wherein a weight matrix update

is performed only once at the end of each epoch. Between these two extremes is mini-

batch gradient descent, wherein the weight matrix is updated once at the end of every

batch of m training examples encountered. Batch gradient descent will gently minimize

the error function until reaching a local minimum, but is relatively slow to train since

weight updates are only performed once every epoch. Stochastic gradient descent will

approximate a local minimum much more quickly, but is inherently unstable due to the

frequency of weight updates. SGD has a tendency to bounce around a local minimum

instead of finding the center (while this leads to poor convergence on local minima, a

certain level of instability can actually be a good thing, as it provides a mechanism

for escaping, or ‘bouncing out of,’ sub-optimal local minima). Mini-batch is a good

compromise between the speed of SGD and the stability of batch gradient descent, and

is often the flavor of choice when training neural networks.
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Often, the surface of the error function in problems for which a neural network

approach is beneficial is non-convex, meaning the error surface in addition to a global

minimum will include saddle points and sub-optimal local minima which can trap a

network trained with vanilla gradient descent. A common method of escaping saddle

points and sub-optimal local minima is to include a momentum term while performing

the gradient descent weight update. The momentum term is a fraction γ of the previous

update gradient µ:

µt = γ · µt−1 + η · ∇W Error(W t)

W t+1 = W t − µt

The addition of the momentum term accelerates movement along the error surface

when the error gradients at training step t and training step t − 1 point in the same

direction, and decelerates movement along the error surface when they point in different

directions. This helps to dampen oscillation along the walls of saddle points, and, akin

to a ball picking up speed as it rolls down a hill, can help the algorithm power through

plateaus and small dips in the error surface (i.e. sub-optimal local minima) when it en-

counters them. Various modifications to the standard momentum term (e.g. Nesterov

Acceleration) and optimizations of the gradient descent algorithm (e.g. AdaGrad, RM-

SProp, Adam, etc.) aimed at escaping sub-optimal local minima and decreasing training

time are commonly used when training neural networks, but an in depth discussion of

all of these is unwarranted here.

Finally it should be noted that while neural networks can be extremely powerful

tools, they also have a propensity to overfit the training data if improperly designed.

Neural nets which have been overfitted have essentially ‘memorized’ the training data
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rather than learning the general patterns within it, resulting in poor generalizability

and consequently poor performance on unseen data of the same kind. There are several

techniques used in practice to reduce the probability of overfitting a neural net during

training.

Often, overfitting is caused by using a network design that is more complex than

the problem or data warrant. The complexity of a given net is dependent on the

number of adjustable ‘free’ parameters (weights and biases) contained within it, which

is of course in turn dependent on the number of neurons and neuron layers included

within the net. A net with too many free parameters, in other words too much flexibility,

simply devolves into a look-up table. ‘Growing’ and ‘Pruning’ are two strategies that

seek to minimize the probability of over-fitting by constraining the number of neurons

present in the net, thereby constraining net complexity. ‘Growing’ refers to methods in

which one starts with zero neurons and then successively adds neurons one-at-a-time or

in blocks until network performance reaches some sort of desired threshold. ‘Pruning’

is roughly the opposite, in which one starts with a large number of neurons (with

consequently a high probability of overfitting), and then successively removes them

until network performance degrades significantly.

Aside from adjusting the number of neurons present in the net, there exist a num-

ber of common regularization strategies aimed at minimizing the chance of overfitting

by modifying the training strategy. Perhaps the most popular of these regularization

techniques is ‘dropout.’ Dropout refers to the process by which, at every training step,

each neuron in the net (with the exception of the output neurons) is assigned a probabil-

ity p of being entirely ignored, or ‘dropped out’ for that particular training step. This

prevents neurons from co-adapting with neighboring neurons or relying too intently on

only a few input neurons. As such, it causes the neurons to be less sensitive to small

variations in the input, and consequently makes the net as a whole more robust and
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less prone to over-fitting. Another common regularization strategy that modifies the

training process is ‘early stopping.’ This technique takes advantage of the fact that

when a network begins to over-fit the training data, network performance on the val-

idation set begins to degrade. When applying early stopping, the network is tested

against a validation set every x number of training steps. Every time performance on

the validation set reaches a new peak, a snapshot of the network in its current state

is saved. Once performance on the validation set hasn’t peaked for a certain number

of training intervals, training is halted and the last ‘peak’ snapshot of the model is re-

stored, effectively halting network training prior to the point at which overfitting began

to occur.

In addition to modifying the network or the training process itself, regularization

may also be achieved via data augmentation. Data augmentation refers to the genera-

tion of new training data from existing training data, modifying the new data slightly

in a variety of aspects to which one desires the network to be robust. For example, in

training neural networks for image classification, one could generate new training data

by slightly shifting, resizing, rotating, or blurring existing data. Such augmentation

makes the network more robust against these type of operations in unseen data by

minimizing the probability that the model will overfit the peculiarities of the training

data in these regards.

Though many more regularization strategies may be included depending on net-

work design, data, and so on (e.g. max-norm regularization, ℓ1 and ℓ2 regularization,

etc.), those techniques detailed above are some of the most effective and consequently

widespread.

Having laid out the basic structure and function of neural networks along with a

few of their pitfalls and corresponding remedies, I now turn to a more pointed discussion
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of the type of network architecture I plan to use in this dissertation: Multi-Task neural

networks.

2.4.2 Multi-Task Learning (MTL) and joint-prediction

Multi-Task Learning (MTL) within a Machine Learning context refers to the process

of constructing a model such that it learns to perform several related tasks at the same

time while using a shared representation. The basic idea is that by using a shared

representation, what is learned for each task can help other tasks be learned better–

in other words, training signals for all tasks serve as an inductive bias for each task

learned in parallel (Caruna, 1997, pg. 41). One of the more prevalent approaches to

MTL in general is its extension to support vector machines, introduced by Evgeniou

and Pontil (2004). However, as Parameswaran and Weinberger (2010) point out, MTL

operationalization within an SVM requires each of the different learning tasks to share

the same set of classes, which makes such an approach unsuitable for many NLP-related

applications, as well as this dissertation. NLP researchers instead have tended recently

to rely on deep neural networks to operationalize an MTL approach. MTL operational-

ized within neural networks has been used to great effect in a number of NLP-related

problems, including semantic classification and information retrieval (Liu et al., 2015),

Multiple language translation (Dong et al., 2015), and joint POS tagging, chunking,

NER, and semantic role labeling (Collobert and Weston, 2008).
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Figure 2.3: Multi-task net

Figure 2.4: Single-task net

In the context of neural networks, whereas a traditional STL approach to training

learners on four related tasks would require four separate nets, each with an individ-

ual output related to the task at hand, MTL is operationalized by combining these

individual nets into a single net with four separate output layers. Each output layer

corresponds to one of the four individual tasks, and each of these tasks share the hidden

layer(s) and the inputs (the hidden layer(s) here functions as the ‘shared representation’

necessary for MTL). A graphical representation of an MTL neural net architecture is

provided in figure 2.3 (reproduced from Caruna 1997, pg. 44). Compare this to figure

2.4 (reproduced from Caruna 1997, pg. 43), which shows how these same four tasks

would be instantiated in an STL framework.
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MTL is a particularly attractive concept for the purposes of this dissertation in

that it speaks in part to the principle of intersectionality described in section 2.2.3. As

Caruna notes, MTL:

…allows features developed in the hidden layer for one task to be used by

other tasks. It also allows features to be developed to support several tasks

that would not have been developed in any STL [Single Task Learning] net

trained on the tasks in isolation. Importantly, MTL also allows some hidden

units to become specialized for just one or a few tasks; other tasks can ignore

hidden units they do not find useful by keeping the weights connected to them

small

— Caruna (1997), pg. 26

In other words, such a system applied to this dissertation would be able to learn

complex relationships between features related to the predication of various social trait

classes (i.e. classification tasks), and develop co-constructed features within the hidden

layer(s) that are jointly informative for multiple traits or trait groupings.

In addition to improving generalized performance, MTL also improves compu-

tational efficiency. As Caruna (1997) notes, training an MTL net on a set of tasks

often requires less computation than training the individual STL nets which would be

required for learning each task individually.
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Chapter 3: Data

This chapter provides a comprehensive overview of the corpus, social trait operational-

ization and data featurization procedures used in this dissertation.

3.1 Corpus

The primary data source for this dissertation is the 2008 National Institute of Standards

and Technology Speaker Recognition Evaluation corpus (2008 NIST SRE). In total, the

training sets1 2 and test set3 comprise roughly 2,500 hours of multilingual telephone

and interview speech gathered throughout 2007, divided into subsets based on recording

length (10 sec, 3 min, 5 min, 8 min, 12 min), and recording type (interview, phone call).

Each sound file in the NIST SRE corpus is accompanied by a time aligned transcript

generated by an automatic speech recognition system deployed by the creators of the

corpus.4

1training set part 1: https://catalog.ldc.upenn.edu/LDC2011S05
2training set part 2: https://catalog.ldc.upenn.edu/LDC2011S07
3test set: https://catalog.ldc.upenn.edu/LDC2011S08
4Exactly which ASR system was used to generate the transcripts is not made clear in any of the

NIST SRE documentation.
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3.1.1 Corpus metadata

The following metadata is available for most speakers in the NIST SRE corpus:

• Gender
• Birth Year
• Ethnicity
• Years of Education
• Occupation
• Native Language
• Age English Acquired as 2nd Language
• Other Languages Spoken
• Country Born in
• Country Raised in
• State Born in
• State Raised in
• City Born in
• City Raised in
• Smoker
• Height
• Weight

In addition to the speaker metadata, the following metadata is available for most

recordings:

• Recording Date
• Conversation quality (good, acceptable, NA)
• Signal quality (good, acceptable, NA)
• Call language
• Microphone type
• Telephone type

3.1.2 Corpus subsets used here

Recordings in the interview subsets of the corpus are (surprisingly) generally of lower

recording quality than those in the telephone subsets, and typically were recorded

using one microphone to capture speech from both participants in the interview. As
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a result, the automatically generated transcripts for interview speech are more error

prone, and do not indicate which speaker is speaking at any given time. For this

reason, this dissertation focuses on the telephone subsets of the NIST SRE corpus.

The telephone subsets are separated into 10 second subsets and 5 minute subsets, each

recording containing a separate channel for each interlocutor. As 10 seconds is likely

not enough speech to exemplify many of the non-acoustic features on which the ASP

models presented in this dissertation rely, the data used here come exclusively from

the 5 minute telephone subsets of the NIST SRE corpus (the two relevant subsets are

termed “short2” and “short3” in the corpus nomenclature).

As the purpose of this dissertation is to construct ASP models focused on speakers

of American English, recordings of speakers who were raised outside of the US are

excluded, as are recordings of speakers who were raised in the US but who did not

acquire English as a second language until after the age of 5, and/or who do not consider

themselves to be native speakers of American English. To give the ASP models the best

chance of success, recordings with a conversation or signal quality rated as anything less

than “good” are also excluded, as are recordings made using a telephone speaker-phone.

In most cases both channels from a given telephone conversation in the corpus meet

this criteria. There are however instances where only one of the two recorded channels

from a given conversation met these criteria and thus only one side of that conversation

(i.e. speech from only one of the two interlocutors from that conversation) is included

in the present analysis.

Applying these filtering criteria results in 1,001 remaining 5 minute single-channel

recordings (approximately 83.4 hours of recorded speech in total) from 669 unique

speakers. A break down of speakers with respect to all five social traits examined in

this dissertation is available in chapter 4.
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3.1.3 Transcript accuracy

As a great deal of the feature extraction and analysis depends on the accuracy of the

time aligned transcripts included in the corpus for each sound file, it is important to

perform an assessment of said accuracy. The standard measure of accuracy applied to

automated speech recognition systems is word error rate (WER), defined as the sum

of the number of substitutions, insertions, and deletions of lexemes required to match

the ASR output to the reference, divided by the true number of lexical items in the

reference:

WER = S + D + I

N

Though human performance on transcription tasks is often cited as having around

a 4% word error rate (see e.g. Lippmann, 1997), Xiong et al. (2017) report that profes-

sional human transcribers hired to transcribe conversational telephone speech from the

Switchboard and CallHome sections of the 2000 NIST eval test set produced transcripts

with word error rates of 5.9% and 11.3% on average, respectively.5 As the Switchboard

and CallHome data from the 2000 NIST eval corpus is quite similar in nature to the con-

versational telephone speech from the 2008 NIST SRE corpus used in this dissertation,

it is reasonable to expect a similar word error rate were we to hire our own professional

transcribers to produce transcripts. So long as the automatically generated transcripts

in the NIST SRE Corpus exhibit word error rates relatively close to the 6-11% WER

reported by Xiong et al. (2017) for human transcriptions of telephone conversations,

they should be considered to be acceptable for use within the present dissertation.
5The ASR system detailed by Xiong et al. (2017), one of the most accurate ASR systems proposed

to date, performed at a WER of 5.8% and 11.0% on the Switchboard and CallHome data– narrowly
beating human performance.
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To assess the accuracy of the transcripts included in the telephone conversation

sections of the 2008 NIST SRE corpus, 8 sound files balanced for speaker sex and eth-

nicity6 were selected at random from the subset of NIST SRE telephone conversations

used in the present dissertation and transcribed by hand by a professional linguist with

extensive experience in transcribing recorded conversational speech (i.e. me, the author

of this dissertation). Word Error Rates were then calculated between the automatically

generated transcripts and the human generated transcripts. Results of this investiga-

tion are presented in table 3.1. It should be noted that the guidelines followed for

WER calculation were quite strict, penalizing the automatic transcriptions for lexeme

guesses that were phonetically identical yet not lexically identical to what the human

transcriber considered to be the true reference lexemes (e.g. “too” instead of “to” was

penalized as one substitution, “a just” instead of “adjust” was penalized as one substi-

tution and one insertion, and so on). As such, the WERs presented in table 3.1 should

be considered as an accurate assessment of the lexical inaccuracy of the transcripts, but

a slightly inflated assessment of the phonemic inaccuracy of the transcripts.

Table 3.1: Word error rate for NIST SRE auto-generated transcripts

sex
ethnicity f m Average
Hispanic/Latino 16.5% 10.4% 13.5%
Asian 8.5% 13.9% 11.2%
African-American 13.6% 16.5% 15.1%
White 7.9% 7.6% 7.8%
Average 11.6% 12.1% 11.9%

The observed word error rates of between 7.6% and 16.5% (average: 11.9%) are

surprisingly good, and should be well within the bounds of acceptability for the present
6Though it would be preferable to examine a selection of sound files balanced for all five social

traits examined, this would necessitate a human review of at least 480 individual sound files (roughly
40 hours of speech recordings), which is unfeasible for the present analysis given time and resource
constraints.
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use case. However, though the sample size is small, these results do appear to hint at eth-

nicity effects on automatic transcription accuracy– a phenomenon that Tatman and Kas-

ten (2017) have found in several publicly available ASR systems. Though it is possible

that higher rates of transcription inaccuracies for African-American and Hispanic speak-

ers may pose problems for syntactic parsing and phonemic alignment/summarization

components downstream, the WER does appear to still be within reasonable bounds

for these speakers. Such differences in transcription accuracy, while undesirable from

the standpoint of ASR systems deployed in the real world, may actually be a source of

useful training signals in differentiating speakers of different ethnicities for ASP systems

if a measure of discourse coherence and/or disfluency is included.

3.2 Data Preprocessing

Data files for each 5 minute telephone conversation in the 2008 NIST SRE corpus come

in the form of a dual channel .sph sound file (one speaker per channel) along with an

associated .cfm transcript file of the conversation, marked for current speaker, and time

aligned at the word level.

In order to extract exemplars of specific phones from the sound files during con-

struction of the predictive phonetic features outlined in below, the existing lexically

aligned transcript must be augmented by a transcription of the sound file aligned at

the phonemic level. Several off-the-shelf software tools are available for automatic

phonemic alignment, provided one already has a transcript which is time aligned at the

word or utterance level, including the Forced Alignment and Vowel Extraction (FAVE)

program suite (Rosenfelder et al., 2011), Prosodylab Aligner (Gorman et al., 2011),

and the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017). Of the forced align-

ment tools publicly available, MFA is by far the best documented and most up-to-date

60



(FAVE for instance appears to be no longer actively maintained). MFA also produced

by far the best and most consistent phonemic alignment of all the tools tested with

sample NIST SRE data.7 For these reasons, MFA is used as the forced aligner of choice

to phonemically align transcripts in this dissertation. The US English version of the

Carnegie Mellon Pronouncing Dictionary (CMUDict)8 was used as the underlying pro-

nunciation reference during forced alignment.9 All tokens which were out of vocabulary

for the CMUDict were transcribed by the author according to the proper format and

added to the working lexicon.

MFA requires sound files in .wav format and transcripts in the form of Praat

textgrids with utterance annotations of roughly 30 seconds or less. Therefore, prior to

feeding data to MFA, the dual channel .sph files are separated by channel in order to

produce one sound file per speaker and converted into .wav format. The .cfm transcripts

are also separated by channel and converted to textgrid format in order to produce

one textgrid per speaker, time aligned at the word level. Because the time alignment

provided by the ASR transcripts often fudges the word boundaries by a tenth of a

second or so, words which the ASR transcripts indicate as having less than a 0.5 second

pause between them are grouped into contiguous utterances and padded with 0.015

second buffers on either side of the utterance in order to let the forced aligner decide

where the word boundaries are within the utterance. In other words, the time alignment

given in the ASR transcripts is used only to determine utterance boundaries within the

sound file– lexeme and phoneme boundaries are determined downstream by the forced

aligner. These formatted sound files and textgrids are then passed to MFA, which
7Based on visual inspection of the resulting textgrids.
8http://www.speech.cs.cmu.edu/cgi-bin/cmudict
9It should perhaps be noted that in cases where pronunciation within the speech file doesn’t match

the pronunciation reference for a given token in CMUDict, phonetic transcription will be inaccurate.
For example, if a speaker uses the non-standard alveolar nasal in word-final position for a token such as
“running” yet CMUDict does not include a pronunciation using the the alveolar nasal, the word final
nasal phone will be erroneously transcribed as the velar variant. Some level of this type of inaccuracy
is unavoidable without a major review and revision of the CMUDict, which is beyond the scope of this
investigation.
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Figure 3.1: Preprocessing pipeline for sound files and transcripts

outputs a textgrid time aligned at the lexeme and phoneme levels for each speaker.

The preprocessing pipeline is diagrammed in figure 3.1.

A snapshot of a time-aligned textgrid resulting from passing sample NIST SRE

data through the preprocessing pipeline is provided in figure 3.2. Please note the

surprisingly good (for telephone data) quality of the sound file, exemplified by the

clarity with which formants are depicted in the spectrogram, and the accuracy of the

phonemic alignment.

3.2.1 Utterance chunking

Though the NIST SRE corpus is one of the largest compilations of conversational spoken

data publicly available, treating each of the 1,001 five-minute recordings that result from

the filtering process described above as monolithic (i.e. one data point per recording–
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Figure 3.2: Aligned textgrid output sample from MFA on NIST SRE data

1,001 data points) results in too few data points to be of use to neural network mod-

els of the type used in this dissertation. For this reason, each of the time aligned

transcripts were subsequently chunked into 10 roughly 60 second segments. These seg-

ments were produced by randomly selecting contiguous utterance groups (e.g. groups

of lexemes with less than 0.5 seconds of silence between them) from each transcript

and concatenating them until the resulting segment reached a duration of at least 60

seconds.10 Performing this chunking operation transforms the corpus from 1,001 five

minute speech recordings to 10,010 60 second speech segments. These 10,010 60 second

speech segments are treated as the atomic unit of analysis throughout this dissertation.

While still somewhat on the low side for typical neural network applications, 10,010

data points should be sufficient to train and test the neural network models presented

in chapters 5 and 6.

To sum up, the preprocessing steps outlined here result in 10,010 phone- and

lexeme-aligned transcripts, each consisting of approximately 60 seconds of recorded
10Though this process necessarily means that some utterance groups from the original recording are

present in multiple resulting segmental chunks, this should not be detrimental to the feature extraction
or analysis procedures outlined in the following chapters.
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speech randomly sampled from a single individual during a single conversation, drawn

from 669 unique speakers.

3.3 Social Trait Operationalization

3.3.1 Sex

Speaker sex is operationalized as a two-way classification problem with reference cate-

gories corresponding to the self-identification provided by the NIST SRE corpus partic-

ipants (male/female). All speech segments used in this dissertation came from speakers

who self-reported their sex within the NIST SRE corpus metadata, and thus all 10,010

speech segments were included in all sex-prediction tasks.

Though the category as listed in the NIST corpus metadata is labeled “sex” rather

than “gender,” it is likely that participants in the NIST SRE corpus interpreted this

part of the metadata survey as referring to their gender identity, and unlikely that

corpus administrators cross-referenced hormone levels, birth certificates, etc. in order

to verify that reported “sex” coincided with some definition of biological sex. As such, it

may be more appropriate to term this category as “gender” rather than “sex.” However,

as the exact nature in which this data was collected is not made clear in the corpus

metadata, I will stick to the terminology used in the metadata and refer to this category

as “sex” throughout this dissertation.

3.3.2 Ethnicity

In order to ensure sufficient data points for each ethnicity considered in the ethnic-

ity prediction tasks detailed in the following chapters, only ethnicities with which at
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least 5% of the participants in the subset of the NIST SRE corpus used in this dis-

sertation self-identified were considered (four ethnicities fit this criteria in the corpus:

Hispanic, Asian, Black, and White). Of the 10,010 speech segments used as data points

for training and testing purposes, 8,660 were drawn from speakers self-identifying as

one of these four ethnic categories. Ethnicity was considered as “missing” for the re-

maining 1,350 speech segments and thus these segments were effectively ignored for all

ethnicity prediction tasks. Ethnicity is therefore operationalized in this dissertation as

a four-way classification problem with reference categories corresponding to ethnicity

self identification provided by the corpus participants (Hispanic/Asian/Black/White).

It should perhaps be noted that the original labels for these four categories in

the NIST SRE 2008 corpus are actually “Hispanic/Latino”, “Asian”, “Black/African

American”, and “White”. The category labels “Hispanic/Latino” and “Black/African

American” have been shortened throughout this dissertation to “Hispanic” and “Black”

respectively. Noting the “and or” nature of these two categories as defined in the corpus

is particularly of note in the case of speakers identifying themselves as Hispanic/Latino,

as these two terms don’t necessarily coincide. Some fuzziness in terms of what this

category might have meant to participants may in part be responsible for the difficulty

of accurately identifying speakers belonging to this category that is reported in chapters

5 and 6. That said, none of the ethnic categories as defined in the NIST SRE corpus

are necessarily monolithic, and all may encompass distinct micro-ethnic identities which

speakers may see at some level as being in opposition. Nor is it necessarily the case

that participants internally identified with one and only one of the presented categories,

though they were constrained by corpus administrators into choosing only one.
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3.3.3 Age

Numerical age for each speaker was calculated based on a speaker’s self-reported birth

year and the year of corpus collection (2007). A speaker reporting in 2007 having been

born in 1989 was therefore treated as being 18 years old (2007 - 1989 = 18). Those with

birth years recorded in the NIST SRE metadata which would result in an improbably

young or old age were excluded from age prediction tasks, their birth year being treated

as “missing.” The cutoff for age improbability was a calculated numerical age less than

0 or more than 100.11 Of the 10,010 speech segments used as data points in this

dissertation, 9,660 were drawn from speakers with viable reported birth years (i.e. not

missing or clearly erroneous).

For the purposes of this dissertation age is treated as a categorical variable, binned

into five distinct categories: 16-25, 26-35, 36-45, 46-55, and 56+. Category boundaries

were chosen based on the distribution of numerical age in the corpus12 as well as with

an eye to roughly capturing certain facets of life-stage on either end of the spectrum

(i.e. 16-25 likely captures most participants currently undergoing some type of university

or continuing education, 56+ likely captures most participants who have retired). While

not precisely scientific, there is no real consensus within the relevant literature as to

how to bin age effectively for linguistic experimentation and thus no “best practice” to

follow in this regard. The category boundaries used here result in a number of bins and

bin size that roughly coincides with those used in most existing work on automated age

prediction (e.g. Gillick, 2010).
11It should perhaps be noted that no speaker in the corpus reported a birth year that would result

in a numerical age between 0 and 18 or between 90 and 100. There were however clearly erroneously
recorded birth years of 3000, 1850, and so on.

12E.g. 56 was chosen as the cutoff age for the oldest age group as data from speakers above this age
is sparse and further group delineation would not result in sufficient data points per bucket.
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3.3.4 Region

Region is operationalized as a four-way classification task with reference categories cor-

responding to the four macro-region divisions used in regional mapping by the U.S. Cen-

sus Bureau (West, Midwest, South, Northeast). This four-way categorization schema

was chosen rather than a more sophisticated regional classification system such as that

given by Labov et al. (2006) for instance because of A) metadata availability (most

participants in the corpus subset used here had viable information entered for “state

raised in” but not necessarily for “city raised in”, and thus a classification schema op-

erationalized at the state level was preferred) and B) the relatively small size of the

corpus subset used (a classification schema with numerous regional categories would

result in too many extremely under-represented categories and thus be unsuitable for

use with the types of models used here).

Participants were assigned one of these four regions based on the state they re-

ported having been raised in and that state’s corresponding region within the Census

Bureau regional schema. If a participant listed more than one state in this metadata

field, their region of origin was considered “missing” and they were excluded from re-

gional prediction tasks. Of the 10,010 speech segments used in this dissertation, 9,010

were drawn from speakers who could be assigned a region according to this classifica-

tion schema. The remaining 1,000 segments were excluded from all regional prediction

tasks.

3.3.5 Education

Education is operationalized as a three-way classification task based on the number of

years of education self-reported by NIST SRE corpus participants. Category boundaries

67



are chosen so as to correspond with the major delineations present in the American

Educational system (primary education, undergraduate education, graduate education).

Participants reporting between 0 and 12 years of education are classified as “no-college,”

those reporting between 13 and 16 years of education are classified as “college”, and

those reporting 17+ years of education are classified as “post-college”. Of the 10,010

speech segments used in this dissertation, 9,220 were drawn from speakers who self-

reported the number of education years they had undergone at that time and thus were

able to be assigned one of these three categories. The remaining 790 speech segments

were excluded from all education prediction tasks.

3.4 Feature Extraction

From each of the 10,010 speech segments used in this dissertation, a host of acoustic,

phonetic, and lexical features were extracted and concatenated into a feature vector.

These 10,010 feature vectors constitute the data points used in the training and testing

of the models presented in chapters 5 and 6. Each individual feature extracted is

listed under its corresponding category below, along with a description and notes on

operationalization where appropriate.

3.4.1 Acoustic features

Harmonic to Noise Ratio (HNR): HNR is operationalized as the mean harmonic to

noise ratio (also called “harmonicity” or “acoustic periodicity”) across all vowel chunks

for a given speech segment. HNR was extracted using the harmonicity extraction

functions available within Praat.

Pitch: Three measures of pitch are taken from each speech segment: mean pitch, max
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pitch, and min pitch. These correspond to the average, maximum, and minimum values

in Hz for F0 over all vowel segments present within the span of a given speech segment.

F0 measurements were extracted using Praat.

Jitter: Three measures of Jitter are taken from each speech segment: Local (the average

absolute difference between consecutive periods, divided by the average period), RAP

(Relative Average Perturbation: the average absolute difference between a period and

the average of it and its two neighbors, divided by the average period), and PPQ5 (five-

point Period Perturbation Quotient: the average absolute difference between a period

and the average of it and its four closest neighbors, divided by the average period).

Jitter measurements were extracted using Praat.

Shimmer: Two measures of Shimmer are taken from each speech segment: Local (the

average absolute difference between the amplitudes of consecutive periods, divided by

the average amplitude), and APQ3 (three-point Amplitude Perturbation Quotient: the

average absolute difference between the amplitude of a period and the average of the

amplitudes of its neighbors, divided by the average amplitude). Shimmer measurements

were extracted using Praat.

3.4.2 Phonetic features

Vowel Space Area: Vowel space area is operationalized as the area of the quadrilateral

bounded by the centroids of the /i, æ, u, a/ vowel clouds for a given speech segment in

Lobanov normalized space (Lobanov, 1971).

Vowel Space Dispersion: Vowel space dispersion is operationalized as the mean

pairwise distance between vowel cloud centroids for a given speech segment in Lobanov

normalized space.
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Vowel Dynamicity: Vowel dynamicity is operationalized as the mean Euclidean dis-

tance from the onset to midpoint to off-glide of all vowels within the speech segment

in Lobanov normalized space.

Vowel F1 onset: F1 onset is operationalized as the mean value of F1 25% of the way

through the vowel duration in Lobanov normalized space of a given vowel type over a

speech segment. The feature vector for each speech segment includes a measure for F1

onset for each of the 15 vowels examined and plotted in chapter 4.

Vowel F1 midpoint: F1 midpoint is operationalized as the mean value of F1 50% of

the way through the vowel duration in Lobanov normalized space of a given vowel type

over a speech segment. The feature vector for each speech segment includes a measure

for F1 midpoint for each of the 15 vowels examined and plotted in chapter 4.

Vowel F1 offglide: F1 offglide is operationalized as the mean value of F1 75% of the

way through the vowel duration in Lobanov normalized space of a given vowel type

over a speech segment. The feature vector for each speech segment includes a measure

for F1 offglide for each of the 15 vowels examined and plotted in chapter 4.

Vowel F2 onset: F2 onset is operationalized as the mean value of F2 25% of the way

through the vowel duration in Lobanov normalized space of a given vowel type over a

speech segment. The feature vector for each speech segment includes a measure for F2

onset for each of the 15 vowels examined and plotted in chapter 4.

Vowel F2 midpoint: F2 midpoint is operationalized as the mean value of F2 50% of

the way through the vowel duration in Lobanov normalized space of a given vowel type

over a speech segment. The feature vector for each speech segment includes a measure

for F2 midpoint for each of the 15 vowels examined and plotted in chapter 4.

Vowel F2 offglide: F2 offglide is operationalized as the mean value of F2 75% of the
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way through the vowel duration in Lobanov normalized space of a given vowel type

over a speech segment. The feature vector for each speech segment includes a measure

for F2 offglide for each of the 15 vowels examined and plotted in chapter 4.

3.4.3 Lexical features

Quotative Frequency: Quotative frequency is operationalized as the normalized fre-

quency (per 1,000 words) of a given quotative within a speech segment. The feature

vector for each speech segment includes a measure of normalized frequency for each

of the following quotatives: “be all”, “be like”, “say”, and “go.” It should be noted

that, as the corpus transcripts do not explicitly code reported speech as such, the

normalized frequencies used in the feature vector are frequencies of all occurrences of

these (lemmatized) tokens. This likely artificially boosts the frequency of the polyse-

mous quotatives, particularly “go.” Frequency of the construction “be like” may also

be somewhat inflated due to the discourse marker usage of “like.”

Modal Frequency: Modal frequency is operationalized as the normalized frequency

(per 1,000 words) of a given modal within a speech segment. The feature vector for each

speech segment includes a measure of normalized frequency for each of the following

modal constructions: “will,” “would,” “shall,” “should,” “may,” “might,” “can,” “could,”

“ought,” “must,” “going to,” “have to,” and “need to.” These modal constructions are

drawn from Barbieri (2008)

Intensifier Frequency: Intensifier frequency is operationalized as the normalized fre-

quency (per 1,000 words) of a given intensifier within a speech segment. Intensifier is

defined for the purposes of this dissertation as a lexeme whose lemma matches the form

of one of the top 13 most common intensifiers identified by Barbieri (2008) and whose

head is an adjective or an adverb. The feature vector for each speech segment includes
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a measure of normalized frequency for each of these lexemes. The full list of intensifiers

may be found in appendix D.

Discourse Marker Frequency: Discourse marker frequency is operationalized as

the normalized frequency (per 1,000 words) of a given discourse marker within a speech

segment. As with intensifiers, the set of discourse markers examined in this dissertation

is drawn from Barbieri (2008). The feature vector for each speech segment includes a

measure of normalized frequency for each member of this set. The full list of discourse

markers used may be found in appendix D.

Taboo Frequency: Taboo frequency is operationalized as the cumulative normalized

frequency (per 1,000 words) of all lexemes within a speech segment which are designated

as “taboo.” The set of lexemes considered “taboo” for the purpose of this dissertation is

drawn from Lancker and Cummings (1999) and includes profanity, racial slurs, genitalia

terms, sexual slurs, and so on. The full list of lexemes considered as taboo for the

purposes of this dissertation may be found in appendix D.

Politeness Frequency: Politeness frequency is operationalized as the cumulative nor-

malized frequency (per 1,000 words) of all lexemes within a speech segment which are

designated as “polite.” The set of lexemes considered “polite” for the purpose of this

dissertation is based on the politeness speech act formulae defined in the Longman

Grammar of Spoken and Written English (Biber et al., 1999). The full set of politeness

terms may be found in appendix D.

Polarity: Segment Polarity is operationalized as a float between -1.0 and 1.0, with

higher numbers corresponding to positive sentiment and lower numbers corresponding

to negative sentiment. Polarity is implemented via the TextBlob package in Python,

which calculates polarity over the segment as a whole via rule-based combinatorial

transformations of polarity scores assigned to individual words within the segment.

72



Polarity scores used here for individual words come from the default polarity score table

of the TextBlob package. It should be noted that this is not a particularly sophisticated

implementation of segment polarity, and may be interpreted with some caution.13

Subjectivity: Segment subjectivity is operationalized as a float between 0.0 and 1.0,

0.0 corresponding to objective statements (i.e. factual information) and 1.0 correspond-

ing to subjective statements (i.e. personal opinion, emotion, judgment, etc.). Subjectiv-

ity is implemented via the TextBlob package in Python, which calculates a subjectivity

score over the segment as a whole much the same as it calculates polarity: via rule-based

combinatorial transformations of subjectivity scores assigned to individual words within

the segment. Subjectivity scores used here for individual words come from the default

subjectivity score table of the TextBlob package. As an example, the objective state-

ment “the temperature is 95 degrees” is assigned a subjectivity score from TextBlob

of 0.0, whereas the subjective statement “it feels hot” is assigned a subjectivity score

of 0.85. As with polarity, this is not a particularly sophisticated implementation of

subjectivity and should be interpreted with some caution.

Average word Length: Word length is operationalized as the mean number of sylla-

bles contained in each token in a given speech segment. Syllable boundaries within a

given word are detected using the US English CMU pronouncing dictionary.14

Speech Rate: Speech rate is operationalized as the average number of tokens (words)

per minute within a given speech segment.

Informative ngrams: For each of the five social traits of focus, the top 2,000 ngrams
13Polarity and Subjectivity are included in this feature set for largely exploratory purposes. To my

knowledge these features have not been explored in the sociolinguistic literature as features capable of
distinguishing between social categories. However, polarity and subjectivity are the subject of much
computational interest, and it is not implausible that they might be indicative of sociodemographic
distinctions, hence their inclusion here.

14http://www.speech.cs.cmu.edu/cgi-bin/cmudict

73

http://www.speech.cs.cmu.edu/cgi-bin/cmudict


most informative for distinguishing between trait classes were determined via informa-

tion gain ranking using a binary presence/absence coding schema. The max rank of

ngram considered was 2 (i.e. all unique unigrams and bigrams present within the cor-

pus were considered as candidates). These 2,000 most informative ngrams for each

specific trait were then included as features (using the same binary presence/absence

coding schema) for each speech segment on tasks aimed at predicting that particular

trait (e.g. for single task learning models focused on age prediction, the feature vec-

tors delivered to the models included all previously mentioned features as well as the

presence/absence of each of the top 2000 ngrams for age). A binary coding schema

was chosen for the ngram features based on preliminary testing that showed degraded

performance for models trained on raw frequency and normalized frequency ngram fea-

tures as compared to binary (presence/absence) ngram features. The top 2,000 ngrams

were chosen from the combined set of possible unigrams and bigrams due to preliminary

testing which suggested improved performance for models trained on ngram features

selected in this manner over models trained on ngram features selected from exclusively

either the set of unigrams or the set of bigrams. Inclusion of informative ngrams as fea-

tures was motivated by Gillick (2010), who demonstrated excellent classification results

on similar speaker profiling tasks using similar informative ngram features.

For a detailed examination of the distribution of each of these features with respect

to social traits, please refer to chapter 4. All methodological points concerning the

design and implementation of the models trained on the data and features discussed in

this chapter can be found in chapters 5 and 6.
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Chapter 4: Data Exploration

This chapter examines each of the extracted predictor features with respect to the

five sociodemographic traits of focus: Sex, Ethnicity, Age, Region, and Education.

Examining these predictors prior to and independently of modeling allows for a better

sense of which predictors are likely to be important for which sociodemographic traits

and informs discussion of the feature importance results presented in chapter 7. Trends

observed in visual examinations of the predictive features are confirmed by linear mixed

effects models where appropriate. Unless otherwise specified, the linear mixed effects

models reported below treat the specific feature in question as the dependent variable,

the social trait in question as a fixed effect, and include a random intercept for speaker

ID. Refer to Appendix C for a comprehensive list of results from all linear mixed effects

models fit to the data throughout the course of this chapter.

As mentioned in chapter 3, the 10,010 conversational speech segments which form

the unit of analysis in this dissertation are excerpted from speech data gathered from

669 different speakers. In most cases this chapter will examine feature distribution

with respect to sociodemographic traits at the segment level (i.e. 10,010 data points,

one for each speech segment) rather than the speaker level (i.e. 669 data points– one

for each speaker), as this is the level of granularity at which modeling will occur. All

sociodemographic trait overview sections however are presented at both the segment

and speaker levels.
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4.1 Sex

4.1.1 Overall sex distribution

Prior to examining individual predictors with respect to sex, it’s important to under-

stand the overall distribution of sex throughout the data-set as a whole.
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Figure 4.1: Sex breakdown by speakers (left) and segments (right)

Somewhat of a class imbalance exists at the speaker level, with generally more fe-

male representation than male representation. As seen in figure 4.1, of the 669 speakers

included in the data-set, 38.42% are male and 61.58% are female.

This imbalance is somewhat alleviated when looking at the numbers broken down

by segment rather than by speaker. Of the 10,010 conversational speech segments

analyzed, 44.46% are male and 55.54% are female. This speaks to the fact that though

there is a large imbalance in the total number of unique female and male speakers

represented in the data, male speakers on average took part in a greater number of

telephone conversations during the collection of the original NIST data-set than did

female speakers.
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4.1.2 Acoustic variables

Below is an examination of the acoustic predictors extracted from the data with respect

to sex.

4.1.2.1 Harmonic to noise ratio (HNR)

Figure 4.2 shows a clear difference in HNR between males and females in the corpus,

with females producing higher HNR values than males. A linear mixed effects model fit

to the data confirms a moderately strong and statistically significant effect of speaker

sex on HNR (η2 = 0.208, p < 0.001), suggesting that HNR will indeed be a useful

feature to include when modeling speaker sex.
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Figure 4.2: Sex breakdown of HNR

4.1.2.2 Jitter

All three measures of jitter (absolute, five-point period perturbation quotient, relative

average perturbation) show a clear differentiation between the sexes as seen in figure
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Figure 4.3: Sex differences in jitter measurements at the segment level

4.3, with the five-point period perturbation quotient (ppq5) appearing to show slightly

more differentiation than the relative average perturbation (rap) and absolute measures.

Linear mixed effects models fit to the data confirm moderate to strong, statistically

significant effects of speaker sex on all three measures of jitter (Absolute: η2 = 0.346,

p < 0.001; RAP: η2 = 0.296, p < 0.001; PPQ5: η2 = 0.405, p < 0.001). That male

speakers would exhibit higher jitter values is in line with expectations, and suggests

that jitter would be a meaningful predictor to include when modeling sex. As all three

measures of jitter are highly correlated with one another (Pearson’s r = 0.87), only one

of these jitter measures should be used in modeling.

4.1.2.3 Shimmer

As with jitter, both shimmer measures (absolute, three-point amplitude perturbation

quotient) appear to show a clear difference between the sexes, with absolute shimmer ex-

hibiting slightly more differentiation than the three-point amplitude perturbation quo-

tient (apq3) measure. Moderately strong and statistically significant effects of speaker
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Figure 4.4: Sex differences in shimmer at the segment level

sex on both measurements of shimmer are confirmed by linear mixed effects models fit

to the data (Absolute: η2 = 0.321, p < 0.001; APQ3: η2 = 0.212, p < 0.001). The

direction of the effect is again expected, men exhibiting higher shimmer values than

women, and as the two measures are highly correlated (r = 0.91) only one should be

included as a predictor during the modeling stage.

4.1.2.4 Pitch

Three measures of pitch were observed: the maximum pitch reached throughout a

conversation, the mean pitch sustained throughout a conversation, and the minimum

pitch reached throughout a conversation. Of the three, mean pitch appears to most

strongly differentiate male from female speakers. Linear mixed effects models fit to the

data confirm significant differences between the sexes for all three measures, though

effect size for mean pitch is particularly strong and far outweighs the effect sizes for

maximum and minimum pitch (pitch_min: η2 = 0.023, p < 0.001; pitch_max: η2 =

0.016, p < 0.001, pitch_mean: η2 = 0.574, p < 0.001).
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Figure 4.5: Sex differences in pitch at the segment level

Interestingly, while it is to be expected that males on average have lower mean

and minimum pitch values than females, figure 4.5 appears to show that males, counter

to the literature and intuition, also exhibit a slightly higher maximum pitch in this

particular data-set. This may be a measurement error. Maximum and minimum pitch

values reached during a conversation simply represent the pitch at one particular point,

and thus are more susceptible to momentary inaccuracies by the pitch detection engine

of Praat. Mean pitch, being an average over the entire conversation, is less susceptible

to momentary erroneous pitch readings. Because of the nature of the max and min

pitch collection procedure, these values should be viewed with some suspicion.

4.1.3 Phonetic variables

4.1.3.1 Vowel space

Three features relating to vowel space were extracted for this analysis: vowel space area,

vowel space dispersion, and vowel dynamicity.
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As figure 4.6 shows, males appear to have a larger vowel space on average than

do females. A mixed effects model fit to the data confirms a moderate, statistically

significant effect of speaker sex with respect to this variable (η2 = 0.161, p < 0.001).
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Figure 4.6: Sex differences in vowel space area

Likewise, and somewhat relatedly, figure 4.7 suggests that males also tend to

exhibit wider vowel dispersion on average in this data-set than do females. Again, a

mixed effects model fit to the data confirms a moderate, statistically significant effect

of speaker sex with respect to this variable (η2 = 0.195, p < 0.001).

The sex differences exhibited in figures 4.6 and 4.7 are interesting, as most litera-

ture on this topic suggests the opposite should hold true– namely, females are hypoth-

esized on average to exhibit larger vowel space area and wider vowel dispersion than

males during conversational speech, as discussed in chapter 2. This is reminiscent of

the counter-intuitive finding discussed in section 4.1.2.4 that males in this data-set tend

also to exhibit a higher maximum pitch and wider pitch range than do females. Recall

that this data-set is comprised entirely of telephone conversations, whereas most liter-

ature on sex differences in acoustic speech characteristics in the literature are based on

in-person, conversational speech data or speech data recorded in a laboratory setting.
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Figure 4.7: Sex differences in vowel space dispersion

It’s possible that differences between measures observed in this data-set and expec-

tations based on the literature stem from this difference in genre and/or recording

medium. Some work has been done investigating the effects of the telephone medium

on acoustic/phonetic properties of speech (e.g. Künzel, 2001), but I’m unaware of any

such findings that would account for the particular patterns observed here.

Unlike vowel space area and dispersion, figure 4.8 appears to show no clear dif-

ference between sexes when it comes to vowel dynamicity. This is largely expected, as

vowel dynamicity is not hypothesized in the literature to exhibit a sex difference.

4.1.3.2 Vowel positions

The vowel space plots in figure 4.9 and throughout the rest of this chapter show Lobanov

normalized values for F1 and F2 at three measurement points for each vowel: 25%

of the way through the vowel trajectory (onset), 50% of the way through the vowel

trajectory (midpoint), and 75% of the way through the vowel trajectory (offglide). As

mentioned in chapter 2, measuring vowels at multiple points throughout the trajectory
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Figure 4.8: Sex differences in vowel dynamicity

rather than taking a single (midpoint) measurement for each vowel increases accuracy

in class distinctions for some sociodemographic categories, and is necessary in order

to obtain a measure of vowel dynamicity. Onsets are labeled with a square symbol,

midpoints with a circle, and offglides with a triangular arrow pointing in the direction

of the continuation. The measurements shown in these vowel plots represent the average

measurement at that point for that vowel for that particular grouping variable. E.g.

the F1 and F2 values for the onset of the UW diphthong for males in figure 4.9 are

calculated by first averaging the F1 and F2 measurements 25% of the way through each

UW vowel for each segment, and then taking the mean F1 and F2 for the onset of UW

across all male segments.

Examining the plot of the vowel trajectories for males and females in figure 4.9

reflects the findings above of generally smaller vowel space area and narrower vowel

dispersion for females than for males. This difference appears to primarily be motivated

by a narrower range along F2 for females as compared to males. The greatest difference

between the sexes appears to be in realizations of front vowels, which are produced

much further back in the vocal tract than those of males. In contrast to F2, females
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Figure 4.9: Vowel trajectory differences between sexes

84



appear to exhibit a slightly wider range along F1 as compared to males– the high vowels

being realized slightly higher, and the low vowels being realized slightly lower. Refer

to appendix C for a comprehensive list of effect size and significance of speaker sex on

realizations for each individual vowel.

4.1.4 Lexical features

4.1.4.1 Quotatives

Kword frequency (i.e. frequency normalized per 1,000 words) was extracted for four

different quotatives: “be all”, “be like”, “say”, and “go,” reported in figure 4.10. It

should be noted that, as the data-set does not explicitly code reported speech as such,

the kword frequencies reported here are frequencies of all occurrences of these construc-

tions rather than just the instances in which the construction in question was used in

a definitively quotative context. Figure 4.10 shows the average kword frequency for

males and females for each quotative observed.

Females appear to use quotatives at a slightly higher frequency overall in this

data set than do males. Though the difference in production rates of “be all” and “go”

appear negligible, there does appear to be some sex-based differentiation for production

rates of “say” and “be like.” Linear mixed effects models fit to the data however do not

find these differences to be statistically significant, nor does a linear mixed effects model

fit to the data find a significant difference between the sexes in the total frequency of

quotatives (i.e. quotative rate when instances of all four quotatives are summed). This

is somewhat odd in light of the research discussed in chapter 2 which reports significant

sex-based variation in rates of quotative production. The lack of a meaningful sex effect

here may be a result of the inability to distinguish instances of these constructions in
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Figure 4.10: Quotative usage by sex

quotative contexts from non-quotative contexts in this particular corpus.

4.1.4.2 Modals

As with quotatives, it appears from figure 4.11 that females tend to produce modals at

a slightly higher rate overall than do males. This pattern holds true when examining

production rates for most individual modal verbs as well, with the exception of “should”

and “could.” Linear mixed effects models including a random intercept for speaker ID

however do not find significant differences between the sexes in terms of frequency of

production of any of the modal constructions examined. As with quotatives, this runs

counter to the literature discussed in chapter 2, which reports significant sex-based

differences in frequency rates of modal constructions.
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Figure 4.11: Modal usage by sex

4.1.4.3 Intensifiers

It appears from figure 4.12 that females tend on average to produce intensifiers at a

slightly higher rate than do males. This holds true for most individual intensifiers

examined as well, with the notable exception of “pretty,” which appears to be preferred

by males. Linear mixed effects models fit to the data indicate weak yet significant

effects of speaker sex on frequency rates of “very” (η2 = 0.006, p < 0.05), “so” (η2 =

0.007, p < 0.05) and “pretty” (η2 = 0.019, p < 0.001), but none of the other intensifiers

examined here.
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Figure 4.12: Intensifier usage by sex

4.1.4.4 Discourse markers

Figure 4.13 suggests that discourse marker frequency shows little variation between

male and female speakers, with the exception of “yeah,” which appears to be favored

by male speakers. Linear mixed effects models fit to the data find weak yet significant

effects of speaker sex for only two of the discourse markers examined: “yeah” (η2 =

0.014, p < 0.01) and “I know” (η2 = 0.026, p < 0.001).
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Figure 4.13: Discourse marker usage by sex

4.1.4.5 Pronoun proportions

Figure 4.14 shows the proportion of first, second, and third person pronouns used by

male and female speakers in this data-set. There appears to be very little difference

in pronoun proportions between the sexes, which is somewhat surprising given the

findings described in chapter 2 suggesting that males tend to use first person pronouns

at a higher proportion than do females. Linear mixed effects models fit to the data find

no significant effect of speaker sex in terms of pronoun proportional usage. A significant

(though very weak) effect of speaker sex was however found when comparing the use of

the first person singular nominative pronoun “I” individually (η2 = 0.009, p < 0.05).
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Figure 4.14: Pronoun usage proportions

4.1.4.6 Politeness and taboo frequency

Figure 4.15 shows the average kword frequency of “polite” words and “taboo” words for

males and females in this corpus. Words belonging to the “polite” group are selected

based on the politeness speech act formulae defined in Biber et al. (1999). Words

belonging to the “taboo” group are drawn from Lancker and Cummings (1999). The

full set of lexical items included in each of these categories can be found in appendix

D.

Though some research suggests that males tend to use taboo words more fre-

quently, no significant difference was found in this corpus between males and females

with respect to frequency of taboo language. This may be related to the fact that

all speech segments used here come from conversations between strangers. One might

expect to see more of a pronounced effect of sex on taboo word frequency in a corpus of

more familiar speech wherein use of taboo language is less constrained in general. There
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Figure 4.15: Usage of taboo and politeness terms by sex

does appear to be somewhat of a sex difference in frequency of politeness terminology,

however this effect appears to be driven largely by one or two individual speakers. A

linear mixed effects model fit to the data including a random intercept for speaker ID

found the effect of sex on politeness frequency to be quite weak and non-significant (η2

= 0.005, p = 0.07).

4.1.4.7 Sentiment

Figure 4.16 presents the utterance subjectivity and polarity of speech segments in the

corpus grouped by sex. There appears to be little if any difference in either of these

metrics based on sex. This is to be expected, as I’m not aware of research suggesting a

difference in these metrics between speakers of different sexes.
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Figure 4.16: Segment subjectivity (left) and polarity (right) by sex

4.1.4.8 Speech rate and word length

Figure 4.17 presents a comparison of the speech rate (tokens per minute) and average

word length (in syllables) between male and female speakers in this corpus. There does

not appear to be any meaningful difference between the sexes with respect to these

predictors– a fact confirmed by linear mixed effects models fit to the data.
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Figure 4.17: Speech rate (left) and word length (right) by sex

4.1.4.9 Top informative ngrams

As detailed in chapter 3, the top 2000 ngrams for each sociodemographic trait of focus–

selected from the combined set of all unigrams and bigrams present in the corpus via
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Table 4.1: Top 20 informative ngrams for sex

attributes infogain
my_husband 0.0326438
uh 0.0286200
my_daughter 0.0277263
husband 0.0260696
uh_i 0.0258753
uh_it 0.0237811
ah 0.0219320
uh_you 0.0209853
be_uh 0.0209301
uhhuh_uhhuh 0.0206658
uh_uh 0.0174944
i_um 0.0171691
like_uh 0.0170222
daughter 0.0168330
like_ah 0.0165650
oh_god 0.0156171
you_get 0.0155488
stuff_like 0.0148903
my_wife 0.0143022
know_uh 0.0137681

information gain ranking– were extracted to serve as predictor features for the models

presented in chapters 5 and 6. Table 4.1 presents the top 20 ngrams according to

information gain for speaker sex. The full 2000 are not shown here for reasons of space.

As the table shows, many of the informative ngrams for sex tend to include in-

terjections such as “uh”, “um”, etc., which in this dataset are heavily favored by male

speakers, as well as relation terms (e.g. “wife”, “husband”, “daughter”), which over-

whelmingly favor one sex or the other (except for “wife,” ngrams including relation

terms tend to favor females).
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4.2 Ethnicity

4.2.1 General breakdown

As with sex, it is instructive to examine the overall distribution of ethnicity within

the corpus prior to focusing on ethnicity with respect to any one predictor. Figure

4.18 shows the distribution of both speakers and segments for the four ethnic groups

considered in this dissertation.
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Figure 4.18: breakdown of ethnicity by speakers (left) and segments (right)

There appears to be a large class imbalance in the corpus among these four eth-

nicities, with very few Hispanic speakers and more than 50% of speakers reporting as

White. This class imbalance could be problematic down the line, and may lead to

over-prediction of the “White” category unless some steps are taken to address this.

Strategies to rectify this class imbalance are discussed in more detail in chapter 5.

The proportion of segments from speakers in each ethnic category is nearly iden-

tical to the ethnic proportion among the total number of speakers, indicating that

speakers from the four ethnic groups considered here took part in telephone conversa-

tions during data collection at roughly similar rates.
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4.2.2 Acoustic features

4.2.2.1 Harmonic to noise ratio (HNR)

Though the differences among ethnicities are somewhat slight, figure 4.19 suggests that

Asian speakers may have somewhat higher values for HNR than the other three groups

on average, and that Hispanic speakers may have somewhat lower values of HNR on

average compared with the other three groups.
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Figure 4.19: Difference in HNR between ethnicities

That Asian speakers would exhibit higher values for HNR than the other four

ethnicities is in line with the findings from Newman and Wu (2011), as discussed in

chapter 2, that Asian-American speakers used a significantly ‘breathier’ voice qual-

ity than Latino-, African-, and European-American speakers. That Hispanic speakers

would exhibit lower values of HNR on average than the other three groups however

is not to my knowledge something that has been widely discussed in the literature,

although certain styles of Chicano English have been linked to higher-than-average

incidences of “creaky voice”” (Mendoza-Denton, 2011), and prototypical creaky voice
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generally exhibits lower values of HNR than other types of phonation (Keating et al.,

2015). Despite this, a linear mixed effects model found the effect of ethnicity on HNR

values to be quite weak and non-significant, suggesting that the variation seen in figure

4.19 may be a result of small sample size for the Asian and Hispanic groups.

4.2.2.2 Jitter

There appears to be very little difference among Asian, White, and Black speakers with

respect to jitter. Hispanic speakers however seem to exhibit slightly higher values of

jitter for all three measurements. As with HNR, there is no claim in the literature that

I know of which would lead us to expect such a difference, and so this may simply be

a result of the small sample size for Hispanic speakers within the data-set. In support

of this, a linear mixed effects model found effects of ethnicity on jitter values to be

extremely weak and non-significant.
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Figure 4.20: Ethnicity differences in jitter measurements at the segment level
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4.2.2.3 Shimmer

Figure 4.21 does not appear to show much if any meaningful difference between ethnic-

ities with respect to either absolute or apq3 measures of shimmer. Confirming this, a

linear mixed effects model found effects of ethnicity on shimmer values to be extremely

weak and non-significant.
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Figure 4.21: Ethnicity differences in shimmer at the segment level

4.2.2.4 Pitch

It appears from figure 4.22 that Hispanic speakers exhibit the highest maximum pitch

values and the lowest minimum pitch values, indicating that they may have the widest

pitch range of the three ethnic groups. As mentioned above however, maximum and

minimum pitch values should be suspect as they are likely prone to measurement errors.

Mean pitch values appear to be slightly higher on average for White speakers than for
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speakers of the other three ethnic groups. A linear mixed effects model found effects of

ethnicity on all three measures of pitch to be weak and non-significant.
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Figure 4.22: Ethnicity differences in pitch at the segment level

4.2.3 Phonetic variables

4.2.3.1 Vowel space

The differences between ethnicities with respect to vowel space in figure 4.23 appear

minimal, with Black and Hispanic speakers perhaps exhibiting slightly larger vowel

space areas than Asian and White speakers on average. However, a linear mixed effects

model fit to the data finds a weak though statistically significant effect of ethnicity on

vowel space area (η2 = 0.018, p < 0.05).

Similarly, figure 4.24 suggests that Black speakers in this data-set tend to have

more dispersed vowels on average than the other three groups. A linear mixed effects
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Figure 4.23: Ethnicity differences in vowel space area

model fit to the data find a weak though statistically significant effect of ethnicity on

vowel space dispersion (η2 = 0.022, p < 0.01).

Figure 4.25 shows negligible difference among the ethnic groups in terms of vowel

dynamicity, confirmed by a linear mixed effects model.
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Figure 4.24: Ethnicity differences in vowel space dispersion
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Figure 4.25: Ethnicity differences in vowel dynamicity
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4.2.3.2 Vowel positions

Figure 4.26 plots the vowel trajectories for all four ethnic groups in accordance with

the plotting conventions laid out above in section 4.1.3.2.

A list of what appear in figure 4.26 to be the salient differences among ethnicities

for the vowels analyzed is provided below. Refer to appendix C for a list of those

vowel/point combinations on which ethnicity was shown to have a significant effect.

• IY: The high front glide IY appears monophthongal and nearly identical among
Black, White, and Asian speakers, but Hispanic speakers in this data-set appear
to produce IY with a short, downward off-glide.

• EH: The mid front vowel EH appears largely similar among Asian, Hispanic, and
White speakers. Compared with these three groups, Black speakers appear to
exhibit a relatively fronted and somewhat raised realization of EH.

• AE: Similarly, Black speakers in this data-set appear to exhibit a relatively
fronted and raised realization of AE.

• AY: The overall shape and length of the AY glide trajectory appears similar
between all groups, but for Black speakers the entire glide trajectory is realized
somewhat lower and slightly further back than the other three groups.

• AW: The AW diphthong appears similar for Black and White speakers. Hispanic
and Asian speakers in comparison to Black and White speakers appear to have a
somewhat more backed onset for AW, and Hispanic speakers have a much more
backed off glide than either of the other three groups. Asian speakers appear
to have a shorter trajectory than the three other groups, and a relatively raised
off-glide.

• UH: UH for Black and Hispanic speakers appears somewhat fronted and with a
longer trajectory than compared to Asian and White speakers.

• ER: ER for White and Black speakers appears somewhat backed compared to
Asian and Hispanic speakers. Black speakers also appear to exhibit a lower onset
and higher off-glide than the other three groups, leading to a more upward tilted
trajectory overall.

• AA: Black and Hispanic speakers appear to have lower onsets for AA than do
Asian and White speakers. Hispanic speakers appear to have a more monoph-
thongal realization of AA than do the other three groups.

• AO: AO for White speakers appears slightly more diphthongal than for the other
two groups. White and Black speakers exhibit a more backed off-glide for AO
than the other two groups.

• OW: White speakers appear to have a more fronted onset and longer trajectory
for OW than the other three groups. Asian speakers appear to have the most
monophthongal version of this glide, with a more fronted off-glide.
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Figure 4.26: Vowel positions and trajectories by ethnicity
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4.2.4 Lexical features

4.2.4.1 Quotatives

Figure 4.27 displays the average kword frequency for each of the four quotatives con-

sidered in this dissertation for each of the four ethnicities.
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Figure 4.27: Quotative usage by ethnicity

For all four quotatives, Hispanic speakers appear to be in the bottom two in terms

of frequency of usage. Black speakers appear to be by far the most frequent users of

“say,” and the least frequent users of the “be like” quotative. White speakers exhibit

the highest usage of “be like” and “go,” while exhibiting the relatively low usage of

“say.” Asian speakers appear to be around the middle of the pack in usage of “be all”

and towards the higher end in usage of “be like” and “say.” Of the differences suggested

by figure 4.27 and discussed here, only the difference between ethnicities with respect

to frequency of the “say” quotative was found to be significant (η2 = 0.023, p < 0.01).
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4.2.4.2 Modals

Figure 4.28 shows the kword frequency for the 13 modal constructions considered here.

Interestingly, “would”, “should,” and “have to” all seem to show roughly the same

differentiation pattern among the ethnicities, with Asian speakers using these least

frequently, Black and Hispanic speakers using these most frequently, andWhite speakers

somewhere in the middle. “Will” shows a somewhat different pattern, used by Black,

White, Asian, and Hispanic speakers from most to least frequently, respectively. The

other modals do not appear to show much variation.
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Figure 4.28: Modal usage by ethnicity

Of the differences observed, only the difference with respect to frequency of “would”

(η2 = 0.018, p < 0.05), “could” (η2 = 0.015, p < 0.05), and “ought” (η2 = 0.015, p <

0.05) reached significance in linear mixed effects models fit to the data.
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4.2.4.3 Intensifiers
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Figure 4.29: Intensifier usage by ethnicity

Among those intensifiers used with any real frequency in the corpus, there appears

to be substantial variation in terms of usage among the four ethnic groups. “So” appears

to be much more frequent for Asian speakers than the other three groups, whereas

“very” is used more frequently by White speakers than speakers of the other three

groups. “Pretty” is used most heavily by Asians and Hispanics. Black speakers appear

to be quite infrequent users of “really” and “pretty” as compared to the other three

groups. Linear mixed effects models fit to the data find somewhat weak yet statistically

significant effects of ethnicity with respect to frequencies of “really” (η2 = 0.029, p <

0.001), “very” (η2 = 0.019, p < 0.05), and “pretty” (η2 = 0.016, p < 0.05).
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4.2.4.4 Discourse markers

While most discourse markers appear in figure 4.30 to be used at roughly the same

frequency among the various ethnic groups, a few discourse markers stand out as being

preferred by one group or another. The markers “yeah” and “so” for instance are highly

preferred by Asian speakers, while usage of “you know” is dominated by Black and

Hispanic speakers. “Okay” appears to be favored by Black and Asian speakers. “Like”

interestingly appears to exhibit a pattern of avoidance, with Black speakers using this

discourse marker roughly 25% less frequently than the other three groups.
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Figure 4.30: Discourse marker usage by ethnicity

Linear mixed effects models fit to the data reveal somewhat weak yet statistically

significant effects of ethnicity on frequency of “really” (η2 = 0.021, p < 0.01), “like” (η2

= 0.018, p < 0.05), “okay” (η2 = 0.059, p < 0.001), “yeah” (η2 = 0.015, p < 0.05), “so”

(η2 = 0.055, p < 0.001), “sort of” (η2 = 0.017, p < 0.05), and “you know” (η2 = 0.025,

p < 0.01).
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4.2.4.5 Pronoun proportions

Figure 4.31 shows the proportion with which speakers from the four ethnic groups used

first, second, and third person pronouns. While there is some variation, the differences

appear minimal. Linear mixed effects models fit to the data do however show significant

(albeit somewhat weak) effects of ethnicity for the first person (η2 = 0.034, p < 0.001),

second person (η2 = 0.027, p < 0.01) and third person (η2 = 0.022, p < 0.01) pronoun

proportions.
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Figure 4.31: First, second, and third person pronoun usage proportions

4.2.4.6 Politeness and taboo frequency

Figure 4.32 shows the kword frequency for politeness and taboo-related terminology

among the four ethnicities considered in this dissertation.
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Figure 4.32: Usage of taboo and politeness terms by ethnicity

With regard to politeness terminology, Black, White, and Asian speakers all ap-

pear to exhibit roughly similar usage levels, with Hispanic speakers using politeness

terminology somewhat less frequently than the other three groups.

For taboo word frequency, it appears that Asian speakers tend to use taboo words

with the highest frequency, followed by Black and White speakers. Hispanics use taboo

words at the lowest frequency of all ethnic groups considered– roughly 60% of the rates

for the other three groups.

A linear mixed effects model found no significant effect of ethnicity on either of

these features, indicating that the low values for Hispanic speakers may be an artifact

of small sample size for the Hispanic speakers.
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4.2.4.7 Sentiment

Figure 4.33 presents the subjectivity and polarity of speech segments in the corpus

differentiated by ethnicity.
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Figure 4.33: Segment subjectivity (left) and polarity (right) by ethnicity

There appears to be little difference in either of these metrics based on ethnicity,

though it does appear that White speakers may exhibit lower polarity on average than

the other groups while Asian speakers may exhibit higher polarity than the other groups.

A linear mixed effects model fit to the polarity data found a weak yet significant effect

of ethnicity on segment polarity (η2 = 0.018, p < 0.05). No significant difference among

the ethnicities however was found for subjectivity.

4.2.4.8 Speech rate and word length

Figure 4.34 presents a comparison of the speech rate (tokens per minute) and average

word length (in syllables) between speakers of the four ethnic groups considered.

There appears to be somewhat of a two-way distinction among the four ethnicities

when it comes to word length, with White and Asian speakers tending to produce words

with slightly more syllables per word on average than Black and Hispanic speakers. A
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Figure 4.34: Speech rate (left) and word length (right) by ethnicity

linear mixed effects model found a weak yet significant effect of ethnicity with respect

to this feature (η2 = 0.017, p < 0.05).

With regard to speech rate, Black, White, and Hispanic speakers all appear to

exhibit extremely similar speech rates, while Asian speakers appear to exhibit slightly

slower speech rates than the other three groups. As with word length, a linear mixed

effects model fit to the data finds a weak yet significant effect of ethnicity on this feature

(η2 = 0.018, p < 0.05).

4.2.4.9 Top informative ngrams

As detailed in chapter 3, the top 2000 ngrams (unigrams and bigrams combined) ac-

cording to information gain for each sociodemographic trait of focus were extracted to

serve as predictor features for the models presented in chapters 5 and 6. Table 4.2

presents the top 20 ngrams according to information gain for speaker ethnicity. The

full 2000 are not shown here for reasons of space.
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Table 4.2: Top 20 informative ngrams for ethnicity

attributes infogain
uhhuh_oh 0.0285783
try 0.0274223
oh_you 0.0247547
okay_okay 0.0229029
school_oh 0.0223360
um_i 0.0215278
okay 0.0210200
okay_so 0.0204903
be_pretty 0.0204345
way_you 0.0194375
man_you 0.0192374
school_yeah 0.0189342
oh_oh 0.0185524
oh_okay 0.0180145
now_oh 0.0176348
as_far 0.0167823
hard_it 0.0165488
student 0.0162436
negative 0.0160057
domestic 0.0157866

4.3 Age

4.3.1 Overall age distribution

Before examining any particular predictor with respect to age, it’s important to con-

sider the overall distribution of age within the data-set. Figure 4.35 shows a histogram

overlaid with a density plot of speaker age for the speech segments used in this disser-

tation. The corpus appears rather heavily skewed towards younger speakers, with very

few speakers 60 years old or older. This may cause the models to over-predict younger

age ranges, and will likely make it difficult to recognize those speakers 60+ years old.

As with the class imbalance for ethnicity, this issue is addressed in chapter 5.
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Figure 4.35: Overall age distribution

Though age may be treated as a categorical or continuous variable, the following

analysis (as well as the rest of the discussion on age in the following chapters) treats age

as a categorical variable as described in chapter 3 for the reasons laid out in chapters

2 and 3. For the purpose of this investigation, age is binned into the following five age

range categories: ages 16-25, ages 26-35, ages 36-45 , ages 46-55 , and ages 56+.

4.3.2 Acoustic variables

4.3.2.1 HNR

As figure 4.36 shows, HNR values do not appear to show much significant movement

across the age spectrum, although there does appear to be a slight bump in HNR for
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speakers in the older two age groups. A linear mixed effects model fit to the data does

not show any significant effect of age category on HNR values.
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Figure 4.36: HNR measurements by age

4.3.2.2 Jitter

Though the RAP and PPQ5 measurements of jitter don’t appear to show much variation

across age groups, absolute jitter appears to exhibit a pattern of steadily increasing

jitter values up until the oldest age group, in which it declines. Absolute jitter may

therefore be a useful indicator for distinguishing between speakers in the middle three

age categories. Linear mixed effects models fit to the data found a weak yet statistically

significant effect of age category on absolute values of jitter (η2 = 0.017, p < 0.05) but

not on the other two jitter measurements.
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Figure 4.37: Jitter measures by age

4.3.2.3 Shimmer

Unlike jitter and HNR, absolute shimmer appears to show a slight but steady downward

trend until around age 55, at which point it levels out. Though this pattern is more

profound in the absolute measure of shimmer versus the APQ3 measure, the same

basic trend is observed for both, indicating that shimmer may be a useful indicator for

distinguishing between age categories. Linear mixed effects models show moderately

weak yet statistically significant effects of age group on both the absolute (η2 = 0.041,

p < 0.001) and APQ3 (η2 = 0.034, p < 0.001) measures of shimmer.
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Figure 4.38: Age category differences in shimmer at the segment level

4.3.2.4 Pitch

Pitch minimum and mean values appear relatively flat throughout the age groups. How-

ever, there does appear to be somewhat of a downward trend in maximum pitch start-

ing from the youngest age group with the highest values to the middle age group, after

which max pitch appears to hold steady. Linear mixed effects models fit to the data

show relatively weak yet statistically significant effects of age category on measures of

maximum pitch (η2 = 0.026, p < 0.01), but not minimum or mean pitch.
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Figure 4.39: Age category differences in pitch at the segment level

4.3.3 Phonetic features

4.3.3.1 Vowel space

Vowel space area and dispersion appear from figures 4.40 and 4.41 to exhibit a growth

and decline trend wherein mean values increase from the youngest to the middle-most

age categories and subsequently decrease from the middle-most to the oldest categories.

Linear mixed effects models fit to the data confirm relatively weak yet statistically

significant effects of age category on both vowel space area (η2 = 0.015, p < 0.05)

and vowel dispersion (η2 = 0.016, p < 0.05). Why these measures might exhibit this

“rise-and-fall” pattern across the age groups is unclear, as I am aware of no existing

work demonstrating such a trend. One possibility is that the middle age groups may

be under more pressure to produce “clear speech” (see e.g. Ferguson and Kewley-Port,

2007) than other age groups on average as a result of caregiver and/or marketplace-

induced pressures (e.g. modeling speech norms for children, sounding “professional” in
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the workplace, etc.).
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Figure 4.40: Age differences in vowel space area

Unlike vowel space area and dispersion, figure 4.42 shows no meaningful difference

in terms of vowel dynamicity across age groups, as was expected.
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Figure 4.41: Age differences in vowel space dispersion
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Figure 4.42: Age differences in vowel dynamicity
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4.3.3.2 Vowel trajectories

Figure 4.43 plots the vowel trajectories for all five age groups in accordance with the

plotting conventions laid out above in section 4.1.3.2.

The salient differences between age groups apparent from figure 4.43 are discussed

in detail below. Refer to appendix C for a list of which specific vowels at which specific

points show a significant effect of age.

• EY: Speakers in the 16-25 age group and the 26-35 age group appear to realize
EY with a shorter overall trajectory and a relatively fronted and raised onset than
speakers in the older age groups.

• EH: The onset of EH appears slightly lowered in the 16-25 and 26-30 age groups
as compared to the older age groups.

• AE: Speakers in the youngest age group (16-25) exhibit a relatively lowered onset
of AE as compared to the older groups.

• UH: UH appears to be more fronted in the younger age groups of this data-
set. Speakers in the 56+ age group produce UH with an relatively backed onset
compared to speakers in the 26-35, 36-45, and 46-55 age groups, and speakers
in age groups 26-35, 36-45, and 46-55 in turn all appear to produce UH with a
relatively backed onset compared to speakers in the 16-25 group.

• OW: The trajectory of OW appears to be shorter for speakers in the younger
age groups as compared to the older age groups. While all groups have relatively
similar onset positions for OW, speakers ages 36+ appear to exhibit a more diph-
thongal, backed offglide as compared to speakers in the 16-25 and 26-35 age
groups.

• AA: Likewise AA for speakers ages 36 and above appears more diphthongal
than younger speakers, with clear movement between the midpoint of the vowel
and the off-glide measurement point. Speakers in age groups 16-25 and 26-35
in comparison show almost no movement whatsoever between the midpoint and
offglide measurement points.

• AY: There appears to be a clear difference in realization of AY between age
groups 36+ and age groups younger than 36. Speakers in the older groups exhibit
onsets and off-glides for AY that are relatively retracted and lowered compared
to speakers in the younger age groups.

• AW: Speakers in age groups 36+ exhibit relatively fronted onsets and offglides
for AW than younger speakers.
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Figure 4.43: Vowel trajectories by age group
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4.3.4 Lexical features

4.3.4.1 Quotatives

Figure 4.44 displays the average kword frequency of quotatives for each of the five age

groups.
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Figure 4.44: Quotative usage by age

The most striking and salient difference among the age groups is the frequency

with which the “be like” construction was used. There appears to be a strong trend

wherein younger speakers use this construction far more frequently than older speakers.

A relatively strong, significant effect of age group on rates of “be like” is confirmed by

a linear mixed effects model (η2 = 0.137, p < 0.001).

Similarly, there appears to be an inverse (though somewhat weaker) trend for

“say,” with younger age groups using this quotative successively less frequently than

older age groups. Despite the visual trend however, a linear mixed effects model fit to
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the data does not show a significant effect of age on frequency of “say.”

The trends observed here are in line with the research discussed in chapter 2,

which suggest that usage of the “be like” quotative construction has been gaining ground

relative to usage of more traditional quotatives like “say” within the last several decades.

4.3.4.2 Modals

Figure 4.45 shows the kword frequency of modal and semi-modal constructions across

the five age groups.

0

1

2

3

4

go
in

g_
to

sh
al

l

m
ig

ht

ou
gh

t

m
us

t

ne
ed

_t
o

m
ay

sh
ou

ld

co
ul

d

w
ill

ha
ve

_t
o

w
ou

ld

ca
n

Lexeme

F
re

qu
en

cy
 p

er
 1

00
0 

w
or

ds

age_cat

16−25

26−35

36−45

46−55

56+

Figure 4.45: Modal usage by age

Though there are no clear linear trends as there are with quotatives, some in-

teresting differences do emerge. Recall from chapter 2 that Barbieri (2008) observed

significantly higher usage of “may,” “will,” “could,” “ought,” “might,” and “have to”
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for older speakers as compared to younger speakers. In most cases, the data from the

NIST corpus used here are in line with those findings. Barbieri also found however

that the one modal verb used more by younger speakers than older speakers was “can.”

This does not appear to be the case in the NIST data, as the oldest age group exhibits

roughly the same frequency for “can” as the youngest three age groups.

Despite the apparent differences in figure 4.45, the only statistically significant

difference between age groups with respect to modal frequency found during linear

mixed effects testing was for the modal construction “have to” (η2 = 0.015, p < 0.05).

4.3.4.3 Intensifiers

Figure 4.46 compares the kword frequency of select intensifier usage across the five age

groups.

There appears to be clear differentiation among the age groups with respect to

usage of most of the intensifiers considered here, with several exhibiting the sort of

linear trend that one would expect from a variable that is steadily shifting over time.

Perhaps the clearest difference of all is that between usage of “very” for the oldest group

as compared to the younger four groups. The difference in usage of “very” among age

groups was found to be statistically significant in a linear mixed effects model (η2 =

0.016, p < 0.05).

“Really” appears to show a two way distinction, with speakers in the youngest

two age groups producing this intensifier nearly twice as frequently as speakers in the

older three groups. A linear mixed effects model confirms a weak yet significant effect

of age on usage of “really” as an intensifier (η2 = 0.039, p < 0.001).

“Pretty” shows the clearest linear trend, with usage steadily increasing across age

123



0

1

2

3
co

m
pl

et
el

y

to
ta

lly

re
al

ab
so

lu
te

ly

to
o

pr
et

ty

ve
ry

re
al

ly so

Lexeme

F
re

qu
en

cy
 p

er
 1

00
0 

w
or

ds

age_cat

16−25

26−35

36−45

46−55

56+

Figure 4.46: Intensifier usage by age

groups from older to younger. As with “really,” a linear mixed effects model confirms

a weak yet significant effect of age on usage of “pretty” as an intensifier (η2 = 0.035, p

< 0.001).

Though much less frequent overall than “pretty,” the intensifier “absolutely” also

shows a somewhat linear (though inverse) usage trend, with usage decreasing over age

groups from older to younger. Though weak, a linear mixed effects model fit to the

data shows a significant effect of age on usage of this intensifier as well (η2 = 0.018, p

< 0.05).

The two intensifiers “totally,” and “completely” are used rarely if at all by speakers

in the two oldest age groups, and are used most by speakers in the youngest age group.

All these findings are in line with Barbieri (2008), who found young speakers in
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the BNC leading in usage of most intensifiers with the exception of a few particular

intensifiers such as “very” and “absolutely.”

4.3.4.4 Discourse markers

Figure 4.47 shows a comparison of the kword frequency for select discourse markers

across the five age groups considered here.
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Figure 4.47: Discourse marker usage by age

As expected, nearly all of the discourse markers under consideration show signs

of either increasing or decreasing from younger to older age groups, making the kword

frequency of these lexemes likely highly informative to models trained to predict speaker

age. The two most frequent discourse markers overall– “yeah” and “like”– also appear

to show the sharpest age group distinction, with younger speakers using these markers
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at much higher rates than older speakers. The markers “so,” “just,” “really,” “I mean,”

“I guess,” “kinda/kind of,” and “sorta/sort of” also appear to be higher in frequency

for younger speakers, albeit less clearly delineated than the differences for “like” and

“yeah.” In contrast, the markers “you know” and “right” appear to be lower for speakers

in the younger age groups. Though significant effects of age were found for several of

the discourse markers examined here (refer to appendix C for a full list), a particularly

strong effect of age was found for the discourse marker like (η2 = 0.239, p < 0.001).

4.3.4.5 Pronoun distribution

Figure 4.48 shows the relative proportion with which each age group used first, second,

and third person pronouns.
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Figure 4.48: First, second, and third person pronoun usage proportions
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Though the differences are somewhat small, it does appear that the younger two

age groups use first person pronouns at a higher rate than the other three groups, and

vice versa for third person pronouns. These differences are confirmed as statistically

meaningful in a linear mixed effects model (first person pronouns: η2 = 0.043, p < 0.001;

third person pronouns: η2 = 0.046, p < 0.001), and are in line with the findings from

Barbieri (2008) that younger speakers in the BNC tend to use first person pronouns

more frequently and third person pronouns less frequently than older speakers.

4.3.4.6 Taboo and politeness terminology

Figure 4.49 compares the kword frequency of taboo and politeness terminology across

the five age groups.
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Figure 4.49: Usage of taboo and politeness terms by age
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Focusing first on the usage difference for taboo terminology, we see the classic

“u-shaped” pattern of usage often seen with non-standard, age-graded variables. As

mentioned in chapter 2, this u-shaped usage pattern seen for non-standard variables

is characterized by a peak in adolescence when pressure to not conform to societal

norms is highest, A trough for working-age speakers, and a second peak in older age

as speakers leave the workforce and pressure to conform to societal norms is somewhat

relaxed. The usage of taboo terminology in the NIST corpus appears to follow this

pattern exactly, with peaks in the oldest and youngest age groups, and a trough for the

middle three age groups.

Focusing now on the frequency of politeness terminology, we also see somewhat

of a u-shaped pattern here, though this time the second youngest and not the youngest

age group exhibits the initial peak. The difference between speakers 16-35 and speakers

36-55 is in line with the finding from Barbieri (2008) that younger speakers tended in

the BNC to use “polite speech-act formulae” more frequently than older speakers. The

peak in politeness terminology for older speakers however is not something she or others

have observed, and may be an artifact of the small sample size of speakers 56+ years

of age.

Despite the observed pattern of age-related differences for these two predictors,

neither mixed effects model for these features reveals particularly strong or significant

age-group effects.

4.3.4.7 Sentiment

Figure 4.50 compares polarity and subjectivity across the five age groups.

As this figure shows, there is essentially no difference in polarity whatsoever among
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Figure 4.50: Segment subjectivity (left) and polarity (right) by age

the five age groups. Subjectivity also appears to show very little age-based variation,

though there may be a very slight tendency for older speakers to be less subjective

on average than younger speakers. Linear mixed effects models find no significant

differences with respect to age for either of these two predictors.

4.3.4.8 Speech rate and word length

Figure 4.51 compares speaking rate and word length across the five age groups.
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Figure 4.51: Speech rate (left) and word length (right) by age

Speaking rate appears to hold relatively constant for the three youngest age groups

before exhibiting a slight decline across the oldest two age groups. The difference in

speech rate between the oldest speakers and the speakers ages 16-45 may be a useful
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feature in distinguishing those speakers belonging to the oldest age category. A linear

mixed effects model fit to the data for speech rate finds a weak yet statistically significant

effect of age (η2 = 0.016, p < 0.05)

In contrast, word length appears to be highest on average for the oldest and

youngest speaker groups, dipping among speakers in the 36-45 age category. As with

speech rate, a linear mixed effects model fit to the data for word length finds a weak

yet statistically significant effect of age (η2 = 0.017, p < 0.05).

4.3.4.9 Top informative ngrams

As detailed in chapter 3, the top 2000 ngrams (unigrams and bigrams combined) ac-

cording to information gain for each sociodemographic trait of focus were extracted to

serve as predictor features for the models presented in chapters 5 and 6.

Table 4.3 presents the top 20 ngrams according to information gain for speaker

age. The full 2000 are not shown here for reasons of space.

Given the striking age differentiation seen in usage of the quotative construction

“be like” earlier in this section, it is not surprising (and is somewhat comforting) to

see this construction ranked highest of all candidate ngrams in terms of information

gain for the social trait of age. Likewise, the frequent presence of the discourse marker

“like” in the bigrams making it into the top 20 for age echos the strong pattern of

age differentiation for this discourse marker presented above. Presence of the slang

term “cool” and the relational term “daughter” in ngrams making it to the top 20 for

age also makes sense (e.g. the bigram “my_daughter” is likely used only by speakers

who in fact have a daughter. The probability of a speaker having children may safely

be assumed to increase with age, and therefore it makes sense that a speaker using
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Table 4.3: Top 20 informative ngrams for age

attributes infogain
be_like 0.0465302
cool 0.0445181
like_it 0.0404501
think_like 0.0367275
daughter 0.0330492
like_um 0.0315571
of_like 0.0309710
like_i 0.0288957
just_like 0.0287896
wife 0.0274536
of 0.0272810
feel_like 0.0271774
like_you 0.0264094
yeah_um 0.0252525
kind_of 0.0250567
completely 0.0241243
you_like 0.0235144
my_daughter 0.0234517
be_cool 0.0231503
say_they 0.0231163

this construction likely does not belong to the youngest age group.), and serves to

highlight the importance of including the top n infogain ngrams as features rather than

relying solely on lexical features which have been previously shown in the sociolinguistic

literature to exhibit social patterning.
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4.4 Region

4.4.1 General breakdown

Figure 4.52 shows the distribution of both speakers and segments for the four region

groups considered in this dissertation.
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Figure 4.52: Breakdown of region by speakers (left) and segments (right)

There is somewhat of a class imbalance in the corpus among the four regions,

with roughly twice the number of northeastern speakers as speakers from any other

region. This class imbalance could be problematic down the line, and may lead to

over-prediction of the “northeast” category. Strategies to rectify this class imbalance

are discussed in more detail in chapter 5.

The proportion of segments from speakers in each region category is nearly iden-

tical to the regional proportion among the total number of speakers, indicating that

speakers from the four regional groups took part in telephone conversations during data

collection at roughly similar rates.
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4.4.2 Acoustic features

4.4.2.1 Harmonic to noise ratio

Figure 4.53 compares the four regions examined here with respect to HNR.
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Figure 4.53: Difference in HNR between regions

Though the differences among regions are somewhat slight, figure 4.53 suggests

that southern speakers may have somewhat higher values for HNR than the other

three groups on average. That southern speakers would exhibit higher values for HNR

than the other three regions would be somewhat surprising, as there is nothing in the

literature to my knowledge that suggests this sort of effect. However, a linear mixed

effects model found no significant effect of region on HNR values, indicating that the

variation seen in figure 4.53 is not statistically meaningful.
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4.4.2.2 Jitter

Figure 4.54 compares the four regions examined here with respect to three measure-

ments of Jitter.
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Figure 4.54: Region differences in jitter measurements at the segment level

Figure 4.54 appears to show some meaningful differences in jitter with respect

to region. Speakers from the west appear to exhibit higher values for jitter on average

than the other three groups, and speakers from the midwest appear to exhibit the lowest

values for jitter. Speakers from the northeast and the south exhibit similar jitter values.

A linear mixed effects model fit to the data confirms a significant difference between

region groups for the RAP (η2 = 0.016, p < 0.05) and PPQ5 (η2 = 0.014, p < 0.05)

measurements.

That jitter would exhibit regional differences is unexpected, as I am unaware of

any claim in the literature to this effect. It’s possible that the significant differences in

jitter seen here are an artifact of an imbalance within the regional groups with respect
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Table 4.4: Sex category percentages by region category

Sex northeast west south midwest
female 0.51 0.5 0.62 0.71
male 0.49 0.5 0.38 0.29

to some other confounding variable. The only other sociodemographic trait found to

have a significant impact on jitter was speaker sex, with females exhibiting significantly

lower values of jitter than males. Table 4.4 presents the percentage of male and female

speakers in each regional group.

Speakers in the midwest group exhibit by far the highest percentage of female

speakers. It seems likely therefore that the relatively low values for jitter in the midwest

group may be ascribed to an imbalance with respect to sex. However, both the northeast

and the west are split almost exactly evenly between male and female speakers, so it

does not appear that sex is the driving factor behind the relatively high jitter values

for speakers in the west as compared to the northeast and south.

4.4.2.3 Shimmer

There appears to be little meaningful difference if any between the four regions in terms

of shimmer. A linear mixed effects model fit to the data however do show a statistically

significant effect of region on the absolute measurement of shimmer (η2 = 0.023, p <

0.01).
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Figure 4.55: Region differences in shimmer at the segment level

4.4.2.4 Pitch

While the differences in min pitch and max pitch appear negligible, there does appear

to be a substantial difference between the region groups in terms of mean pitch. A

linear mixed effects model fit to the data confirms a weak yet statistically significant

effect of region with respect to mean pitch (η2 = 0.018, p < 0.05).

As with jitter, the only other sociodemographic trait examined here to exhibit a

significant difference in mean pitch is gender, and it appears that gender may well be

the underlying cause of the regional differences seen here. Recall from table 4.4 that the

northeast and west groups were roughly evenly split between male and female speakers,

while the south and midwest groups were 62% and 71% female, respectively. Also recall

from section 4.1.2.4 that females exhibited significantly higher values for mean pitch

than males. That the two most heavily female region groups would exhibit the highest

values of mean pitch is therefore somewhat unsurprising.
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Figure 4.56: Region differences in pitch at the segment level

4.4.3 Phonetic variables

4.4.3.1 Vowel space

Figure 4.57 appears to show little if any effect of region on vowel space area. Likewise,

vowel space dispersion does not appear from figure 4.58 to exhibit any meaningful

differences with respect to region. Linear mixed effects models fit to the data show the

effect of region on these variables to be quite weak and non-significant.

Differences in vowel dynamicity shown in figure 4.59 also appear minimal, however

a linear mixed effects model fit to the data does find a significant effect of region

on dynamicity (η2 = 0.018, p < 0.05). This effect is expected, as many dialects in

the southern region of the united states have been found to exhibit high degrees of

monophthongization of vowel segments which in most other regions are diphthongal

(particularly AY; Labov et al., 2006), and conversely several dialects of the northeast
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Figure 4.57: Region differences in vowel space area

are characterized by a high degree of movement in what in most other regions are

monophthongal vowel segments (particularly AO and AE; Labov et al., 2006).

138



0.9

1.2

1.5

1.8

northeast west south midwest
Region

V
ow

el
 S

pa
ce

 D
is

pe
rs

io
n

  

Figure 4.58: Region differences in vowel space dispersion

0

30

60

90

northeast west south midwest
Region

V
ow

el
 D

yn
am

ic
ity

  

Figure 4.59: Region differences in vowel dynamicity
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4.4.3.2 Vowel positions
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Figure 4.60: Vowel positions and trajectories by region

Figure 4.60 presents the relative positions of the 14 vowels analyzed for each of

the four regions. As expected, many of the vowels presented in figure 4.60 appear to

exhibit meaningful differences in relative position with respect to region. A few of the

more noticeable differences are noted below. Refer to appendix C for a full list of those

vowel/point combinations on which region was shown to have a significant effect.

• OW: Though similar in dynamicity, the onset of the OW vowel for midwestern
speakers appears relatively backed.

• AH: Onset and offglide for AH appear slightly backed for northeastern speakers.
• IY: Onset of IY appears somewhat fronted for northeastern speakers as compared

to the other three groups.
• AE: Onset of AE appears slightly lower for western speakers and slightly higher

for midwestern speakers than the other two groups.
• AA: Onset of AA appears slightly fronted for the midwestern group as compared

to the other three groups.
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4.4.4 Lexical features

4.4.4.1 Quotatives

Figure 4.61 appears to show salient differences in regional usage for the “say”, “be like”,

and “go” quotatives.
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Figure 4.61: Quotative usage by region

Recall that the most significant factor impacting quotative usage found so far

has been age, as detailed in section 4.3.4.1. It is useful therefore to examine the age-

breakdown within each regional group prior to interpreting the differences found in

figure 4.61. Table 4.5 presents the percentage of each regional category made up by

each age group.

The west regional group skews the youngest, followed by the northeast, the south,

and the midwest. In light of this, it appears that the differences in regional quotative

usage may in large part be driven by differential age make-up, with the youngest groups
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Table 4.5: Age group percentages by region category.

age_cat northeast west south midwest
16-25 0.24 0.39 0.15 0.09
26-35 0.30 0.28 0.39 0.28
36-45 0.24 0.17 0.25 0.28
46-55 0.12 0.09 0.16 0.25
56+ 0.10 0.07 0.05 0.11

preferring the newer quotatives “go” and “be like,” and the older regions preferring the

more traditional quotative say. This is consistent with the patterns found in section

4.3.4.1.

4.4.4.2 Modals

Again, the differences in “have to” usage appear to be motivated by age, as this modal

construction was shown in section 4.3.4 to be preferred by middle aged speakers, and

appears here to be used more by the two more middle-aged regional groups than either

the youngest (west) or the oldest (midwest) groups. However, though there appears

from figure 4.62 to be several modals for which regional variation may have a meaningful

impact, linear mixed effects fit to the data showed no significant effect of region on any

of the modal constructions examined here.
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Figure 4.62: Modal usage by region

4.4.4.3 Intensifiers

Figure 4.63 compares rates of intensifier usage among the four regional categories. The

only intensifier to show a significant effect of region in linear mixed effects models fit to

the data was “really” (η2 = 0.021, p < 0.01). The intensifier “really” was also shown

in section 4.3.4 to be heavily influenced by speaker age, and the regional distribution

follows the same pattern– younger regions lead the usage of the “really” intensifier.
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Figure 4.63: Intensifier usage by region

4.4.4.4 Discourse markers

As with the previously discussed sociodemographic traits, regional variation appears

from figure 4.64 to be most prevalent in the discourse markers “yeah” and “like,” both

of which show significant effects of region in linear mixed effects models fit to the data.

Again, usage of these discourse markers appears likely influenced by within-group age

make-up, with the youngest groups far outstripping the oldest groups in frequency of

use.
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Figure 4.64: Discourse marker usage by region

4.4.4.5 Pronoun proportions

As with discourse markers, regional variation in pronoun usage follows the pattern ob-

served for age groups in section 4.3.4, with older regional groups using first person

pronouns less frequently and third person pronouns more frequently than younger re-

gional groups. While the difference among age groups did not reach significance in first

pronoun usage, a linear mixed effects model fit to the data does show a statistically

significant effect of region on third person pronoun usage (η2 = 0.016, p < 0.05).

145



0.21

0.180.17
0.18

0.29
0.3

0.290.28

0.5
0.52

0.540.53

0.0

0.2

0.4

3rd person 2nd person 1st person

Lexeme

P
ro

po
rt

io
n 

of
 O

cc
ur

en
ce

region_macro

northeast

west

south

midwest

Figure 4.65: First, second, and third person pronoun usage proportions

4.4.4.6 Politeness and taboo frequency

Though there appear to be meaningful regional differences in taboo and politeness

frequency in figure 4.66, none of these reached significance in linear mixed effects models

fit to the data when taking including a random intercept of speaker ID.
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Figure 4.66: Usage of taboo and politeness terms by region

4.4.4.7 Sentiment

The differences in polarity and subjectivity presented in figure 4.67 appear negligible.
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Figure 4.67: Segment subjectivity (left) and polarity (right) by region
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Figure 4.68: Speech rate (left) and word length (right) by region

4.4.4.8 Speech rate and word length

Speakers from the northeast appear to exhibit the fastest speech rate on average, and

speakers from the midwest appear to exhibit the slowest. Speakers from the west and

midwest exhibit the highest average word lengths, while speakers from the northeast

and the south exhibit the lowest average word lengths. Linear mixed effects models

confirm a weak but significant effect of region on both word length (η2 = 0.019, p <

0.05) and speech rate (η2 = 0.014, p < 0.05).

4.4.4.9 Top informative ngrams

As detailed in chapter 3, the top 2000 ngrams (unigrams and bigrams combined) accord-

ing to information gain for each sociodemographic trait of focus were extracted to serve

as predictor features for the models presented in chapters 5 and 6. Table 4.6 presents

the top 20 ngrams according to information gain for speaker region. The full 2000 are

not shown here for reasons of space. Unsurprisingly, these tend to almost exclusively

contain geographical references, and should be quite helpful to the models presented in

chapters 5 and 6 for distinguishing speaker region.
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Table 4.6: Top 20 informative ngrams for region

attributes infogain
berkeley 0.0402464
philadelphia 0.0302372
california 0.0261122
philly 0.0218877
chicago 0.0210857
huge 0.0210818
texas 0.0202634
new_york 0.0200970
york 0.0200970
yeah_i 0.0197340
bay 0.0180502
activity 0.0177537
be_right 0.0176040
southern_california 0.0164826
indiana 0.0162447
texas_i 0.0161463
northern_california 0.0149726
jersey 0.0147293
europe 0.0143708
bay_area 0.0141599

4.5 Education Level

4.5.1 Overall education level distribution

Figure 4.69 shows a histogram overlaid with a density plot of the education years

reported by speakers in this data-set.

By far, the most common self-reported number of education years is 16, the typ-

ical number of education years experienced by a student in the American education

system who has completed elementary through high-school (12 years) and received an

undergraduate degree of some sort (4 years). The majority of speakers fall between 12
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Figure 4.69: Overall distribution of education level within the dataset

years of education (the typical amount for having completed high-school) and 18 years

of education (The typical amount for having completed an undergraduate degree plus

a Master’s or similar post-baccalaureate degree). There are relatively small tails in the

distribution of speakers who have completed 11 years or fewer, and 18 years or more.

Those who have undergone 11 or fewer years of education are likely those speakers who

did not complete secondary schooling. Those with 18 or more years of education are

likely those speakers who underwent some level of graduate education after completing

an undergraduate degree (and in the case of those with more than 25 years of education,

likely multiple post-baccalaureate degrees or particularly intensive medical fellowships

and residencies).

As mentioned in chapter 3, in many respects, it makes more sense to group speak-

ers into education categories based on the major delineations present in the American
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education system than to treat education as a continuous variable. The plots in figure

4.70 display the breakdown of speakers in this data-set that fall into each of the three

education categories laid out in chapter 3 at both the segment and the speaker grouping

levels. 51 speakers did not self-report their number of education years and thus are

placed in the “NA” category and not included in the following analyses.
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Figure 4.70: Education category breakdown at the speaker (left) and segment (right)
levels

There appears to be little meaningful difference in the category distributions at the

speaker vs. the segment level, so all following analysis will focus solely on the segment

level.

4.5.2 Acoustic variables

4.5.2.1 HNR

Figure 4.71 suggests a slight tendency for speakers in the post-college group to exhibit

lower HNR values on average than the other three groups. However, a linear mixed

effects model fit to the data does not show a significant effect of education group on

HNR values.
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Figure 4.71: Education category differences in HNR

4.5.2.2 Jitter

Figure 4.72 suggests that the college education group tends to have slightly lower jitter

values than the other education groups. As with HNR however, a linear mixed effects

model fit to the data found no significant effect of education category on any measure

of jitter.

4.5.2.3 Shimmer

Figure 4.73 shows little meaningful difference between the education groups with respect

to shimmer, and as with the other acoustic variables examined so far, a linear mixed

effects model fit to the data found no significant effect of education category on any

measure of shimmer.
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Figure 4.72: Differences in jitter measurements by education category
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Figure 4.73: Differences in shimmer measurements by education category
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Figure 4.74: Pitch differences between education groups

4.5.2.4 Pitch

Figure 4.74 shows little if any difference in minimum or maximum pitch values, but

there does appear to be a relatively large difference in mean pitch between the “no

college” group and the other two groups.

That education category would have any sort of effect on pitch values is unex-

pected, and I know of no literature which suggests that this might be so. It is likely

that education group in this instance is acting as a proxy for some other variable that

meaningfully impacts speaker pitch. Recall from section 4.1.2.4 that females on average

exhibit significantly higher mean pitch values than do males. Table 4.7 shows that the

“no college”” group is predominantly male whereas the other two groups are predomi-

nantly female. It seems likely therefore that the trend observed in figure 4.74 is driven

by the differential sex distribution among the three education categories.
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Table 4.7: Sex category percentages by education category

Sex no college college post-college
female 0.42 0.58 0.53
male 0.58 0.42 0.47

However, despite what appears to be a clear difference between the “no college”

group and the other two groups, a linear mixed effects model fit to the data found no

significant effect of education category on mean pitch.

4.5.3 Phonetic variables

4.5.3.1 Vowel space

Figures 4.75 through 4.77 show effectively no difference in any of the vowel space mea-

sures among the different education categories. This is confirmed via linear mixed

effects models fit to the data, which found no significant effect of education category

for any of these features.

4.5.3.2 Vowel positions

Figure 4.78 displays vowel positions and trajectories for all 14 vowels analyzed for each

of the four education categories.

The most salient differences in vowel position and trajectory with respect to ed-

ucation category are discussed in detail below. Refer to appendix C for a list of those

vowel/point combinations on which education category was shown to have a significant

effect.
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Figure 4.75: Education differences in vowel space area

0.9

1.2

1.5

1.8

no college college post−college
Education Category

V
ow

el
 D

is
pe

rs
io

n

  

Figure 4.76: Education differences in vowel space dispersion
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Figure 4.77: Education differences in vowel dynamicity
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Figure 4.78: Vowel trajectories by education category
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• OW: The “college” and “post-college” groups appear to realize OW with a more
fronted onset than the other group.

• AE: The “no college” group appears to realize the entire AE trajectory higher in
the vowel space than do the other two groups.

• UH: UH for the “no college” group is extremely monophthongal compared to the
other three groups.

4.5.4 Lexical features

4.5.4.1 Quotatives

Figure 4.79 shows the average kword frequency of use for the four quotatives considered

here.
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Figure 4.79: Quotative usage by education

The pattern of quotative use among the education categories looks quite similar

to the patterns observed for quotative use with respect to age. Table 4.8 provides a

comparison of the percentages of each education group that are made up of each age
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Table 4.8: Age group percentages by education category

age_cat no college college post-college
16-25 0.15 0.26 0.22
26-35 0.19 0.26 0.44
36-45 0.30 0.23 0.19
46-55 0.26 0.15 0.08
56+ 0.11 0.10 0.07

group.

Generally, it appears that education can function somewhat as a proxy for age in

this corpus, with more educated speakers on average belonging to younger age groups,

and less educated speakers on average belonging to older age groups. In light of this,

it is unsurprising that more education corresponds to higher use of “be like” and lower

use of “say,” given the findings related to quotative usage by age in section 4.3.4.

It should be noted however that a linear mixed effects model fit to the data found

a significant effect of education category only for frequency of the quotative “go” (η2 =

0.014, p < 0.05).

4.5.4.2 Modals

Figure 4.80 shows the distribution of the examined modal constructions with respect

to education category.

Interestingly, while the usage patterns for modals with respect to education cate-

gory does in many cases mirror the usage pattern seen for age, there are a few deviations.

“Can” appears to be the modal item that deviates the most from what we would ex-

pect given the findings in section 4.3.4 and the distribution of age within the education

categories. It appears from figure 4.80 that usage of “can” increases with education
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Figure 4.80: Modal usage by education

level, though a corresponding increase in the use of “can” was not observed for younger

speakers. Nor does this appear to be related to the distribution of ethnicities within

the different age groups, as little variation among ethnicities was found in section 4.2.4

with regard to frequency of “can.” There may be a bit of a sex effect here, as females

were found in section 4.1.4 to use “can” slightly more than males on average, but the

difference between the highest two education groups here and the lowest two is larger

than that seen for sex. This may be a legitimate difference related to level of education,

though why higher levels of education would lead to different usage patterns for specific

modal constructions is unclear.

4.5.4.3 Intensifiers

As with quotatives, the usage pattern for intensifiers among the education groups largely

mirrors that for age groups. Speakers in the lower education levels (older speakers) favor
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Figure 4.81: Intensifier usage by education

“too” and “real” while speakers in the higher education groups (younger speakers) favor

“pretty” and “really.” Interestingly, it seems that more educated speakers slightly favor

“very” while in section 4.3.4 very was found to be favored heavily by the oldest age

group. However, no significant effect of education group on was found in a linear mixed

effects model fit to the data for any intensifier except “really” (η2 = 0.023, p < 0.001)

and “pretty” (η2 = 0.013, p < 0.05).

4.5.4.4 Discourse markers

As with quotatives and modals, the pattern of usage for discourse markers among

education groups largely follows what we would expect given their age makeup. Those

discourse markers favored by younger speakers are also favored by speakers with high

levels of education, and those favored by older speakers are also favored by those with

low levels of education. The only obvious counter examples of this are the high usage of
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“yeah” by speakers in the “no college” category, and the relatively even usage of “just”

and “so” by all education groups.
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Figure 4.82: Discourse marker usage by education

Linear mixed effects models fit to the data show significant effects of education

category for the discourse markers “really” (η2 = 0.022, p < 0.01), “like” (η2 = 0.012,

p < 0.05), “kind of” (η2 = 0.021, p < 0.01), “sort of” (η2 = 0.012, p < 0.05), and “you

know” (η2 = 0.014, p < 0.05).

4.5.4.5 Pronoun proportions

Figure 4.83 shows the proportion of pronoun occurrence observed with respect to edu-

cation category.

Again mirroring expectations based on mean group age, the education groups

with the youngest mean age also exhibit the highest rates of first person pronoun usage

and the education groups with the oldest mean age exhibit the highest rates of third
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Figure 4.83: First, second, and third person pronoun usage proportions

person pronoun usage. Linear mixed effects models fit to the data found no significant

effects of education category on pronoun usage, however.

4.5.4.6 Taboo and politeness terminology

Politeness terminology patterns for education category again seem to mirror the pat-

terns found for age. Politeness terminology was more frequent in the youngest and

oldest speaker groups, and appears here to be highest in the youngest and oldest educa-

tion groups. Interestingly, the trend observed above for education groups to behave as

one would expect given their respective age makeups does not hold for production rates

of taboo terms. Whereas taboo word usage is highest for the youngest and the oldest

speaker groups and lowest for those middle-age groups, taboo usage across education

levels seems to decline with higher education.

Despite the apparent trends observed here, no significant differences were found
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during linear mixed effects model testing between education groups for either of these

predictors.
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Figure 4.84: Usage of taboo and politeness terms by education

4.5.4.7 Sentiment

There appears from figure 4.85 to be no meaningful difference between education groups

in terms of polarity or subjectivity. This was confirmed via linear mixed effects models

fit to the data.

4.5.4.8 Speech rate and word length

Figure 4.86 compares word length and speech rate across the three education categories.

For word length there appears to be a slight trend for speakers in the lower education

group to use shorter words. There does not appear to be any meaningful difference

between the groups with respect to speech rate. Linear mixed effects models fit to the
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Figure 4.85: Segment subjectivity (left) and polarity (right) by education

data show a weak yet significant effect of education category on average word length

(η2 = 0.029, p < 0.001), but not on speech rate.
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Figure 4.86: Speech rate (left) and word length (right) by education

4.5.4.9 Top informative ngrams

As detailed in chapter 3, the top 2000 ngrams (unigrams and bigrams combined) ac-

cording to information gain for each sociodemographic trait of focus were extracted to

serve as predictor features for the models presented in chapters 5 and 6.

Table 4.9 presents the top 20 ngrams according to information gain for speaker

education. The full 2000 are not shown here for reasons of space.
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Table 4.9: Top 20 informative ngrams for education

attributes infogain
it_you 0.0223163
of 0.0192943
be_kind 0.0182232
kind 0.0156410
um_yeah 0.0149525
continue 0.0148577
kind_of 0.0138285
man_you 0.0137595
remember_i 0.0135244
responsibility 0.0130689
mail 0.0130483
grad 0.0127489
be_cheap 0.0124510
beautiful 0.0124386
careful 0.0123093
different_culture 0.0122196
i_friend 0.0119367
berkeley 0.0118617
week_i 0.0116626
sort 0.0116148

Though some of the top ngrams undoubtedly refer to education (e.g. “grad”,

“Berkeley”) and some could be interpreted as being related to educational experience

(e.g. “be_cheap”, “different_culture”), the relationship between most of the top n-

grams for education and the concept of education itself is unclear. It may be the case

that the education data is so noisy that the top ngrams in this case are relatively

uninformative.
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Chapter 5: Baselines

In order to evaluate the performance of the multitask models discussed in chapter 6,

it’s first necessary to establish some baselines for comparison. Section 5.4 below first

outlines naive baseline performance levels (majority class prediction) for each sociode-

mographic trait of focus. These naive baselines are then compared to predictions from

several Single-Task Learning Multi-Layer Perceptron (STL-MLP) models trained on the

NIST speaker corpus in section 5.5. The performance metrics of the STL-MLP models

are then used as informed baselines against which the multi-task models detailed in

chapter 6 are compared.

5.1 Preprocessing

Prior to any sort of evaluation, the data was preprocessed and split into training and

testing sets. The preprocessing steps applied and a short explanation of each are listed

below:

• Centering: The mean of each predictor column was subtracted from each value
in that predictor column (resulting in a mean of 0 for each predictor).

• Scaling: Values in each predictor column were divided by the standard deviation
of said predictor column (thereby normalizing variance among predictors).

• Zero Variance Elimination: Any predictor columns with zero variance (i.e. pre-
dictor columns with the same value for every observation) were removed.

• K Nearest Neighbors Imputation: In cases where a training example is miss-
ing data for a given predictor, the value of the missing data was estimated by
averaging the values for that predictor from the k most similar training examples
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in the data-set (K=5).
• Yeo-Johnson Transformation: A Yeo-Johnson power transformation (Yeo and

Johnson, 2000) was applied in order to stabilize variance and coerce the predictors
into more Gaussian-like distributions.

• Correlation Filtering: In order to eliminate unnecessary dimensionality, groups
of predictors which were highly correlated with one another (r >= 0.8) were
reduced by retaining only the predictor from that group with the lowest mean
absolute correlation (i.e. the lowest average correlation with all other predictors).

All preprocessing steps were accomplished via the preprocessing functions avail-

able in the Caret R package (Kuhn et al., 2008).

5.2 Subsetting

After applying the preprocessing steps to the data as a whole, training and testing

subsets were then created for each sociodemographic trait of focus. The subsets for

each trait were balanced such that class representation for that trait in the data-set as

a whole was roughly mirrored in both the training and testing subsets (e.g. as the data-

set as a whole is roughly 16% Asian speakers, both training and test sets for ethnicity

were balanced to be comprised of roughly 16% Asian speakers). For each trait, roughly

75% of the data was used for training and roughly 25% was held out for testing. The

training and testing subsets were designed such that segments from the same speaker

appeared in either the training or the testing subsets, but not in both. Segments in the

corpus for which information was uncollected for a particular sociodemographic trait

were not included in either the testing or training sets created for that trait. Each

training subset included all acoustic, phonetic, and lexical features described in chapter

4, as well as those of the top 2000 most informative n-grams for that specific trait as

determined by information gain which were not remove during correlation filtering.
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5.3 Addressing Class Imbalance

As addressed in chapter 4, the NIST corpus is imbalanced for most of the sociodemo-

graphic traits of focus. Large class imbalances tend to be problematic for certain types

of machine learning models, leading to over-prediction of the majority class and under

prediction of the minority class(es). A common way of addressing a large class imbal-

ance is to artificially re-sample the data such that the majority and minority classes are

roughly equally represented in the training data. This can be done one of two ways–

either one can remove examples of the majority class until equal class representation

is reached (under-sampling), or one can add additional minority class examples until

equal representation is reached (over-sampling). In practice, it is common to use a

combination of both under-sampling and over-sampling when dealing with imbalanced

data– over-sampling to boost the minority class numbers, and under-sampling around

class boundaries in order to clean up the training set a bit.

To determine the relative benefit of resampling the training data for the present

tasks, the informed baseline models reported below were trained both with and with-

out resampling. The resampling algorithm used was an ensemble of the Synthetic

Minority over-sampling Technique (SMOTE; Chawla et al., 2002) and Wilson’s Edited

Nearest Neighbor Rule (ENN; Wilson, 1972). SMOTE synthetically creates additional

instances of the minority class(es) by interpolating between similar existing minority

class instances while ENN removes instances whose class does not coincide with the

majority class vote of the three nearest neighbor instances. See Batista et al. (2004)

for a detailed description of this particular sampling combination and its benefits. In

all cases, resampling either had no effect on model performance or slightly degraded

model performance compared to the training runs without resampling. For this reason,

in addition to the problems posed by using re-sampled data to train the multi-task nets
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reported in chapter 6, only the performance metrics from training runs using non-re-

sampled data are reported both below and in chapter 6.

5.4 Naive Baselines

The naive baseline used here is majority class prediction. Majority class prediction

simply predicts each example in the test set to be a member of the majority class. For

example, if a data set is comprised of 90% class A and 10% class B, majority class

prediction will predict class A for every example, resulting in a baseline accuracy of

90%.

Tables 5.1 through 5.5 present the class distributions for the test-sets balanced

for each trait.

Table 5.1: Class frequencies and proportions for sex in
the testing subset

sex freq proportion
female 1390 0.55
male 1120 0.45

Table 5.2: Class frequencies and proportions for ethnicity
in the testing subset

eth freq proportion
white 1380 0.63
black 380 0.17
asian 320 0.15
hispanic 120 0.05

170



Table 5.3: Class frequencies and proportions for age in
the testing subset

age freq proportion
26-35 760 0.33
16-25 510 0.22
36-45 500 0.21
46-55 370 0.16
56+ 190 0.08

Table 5.4: Class frequencies and proportions for region
in the testing subset

reg freq proportion
northeast 860 0.39
south 500 0.23
midwest 430 0.20
west 410 0.19

Table 5.5: Class frequencies and proportions for educa-
tion in the testing subset

edu freq proportion
college 1190 0.50
post-college 810 0.34
no_college 380 0.16

Table 5.6 presents the majority class baseline metrics for macro F1, weighted

F1, and Accuracy for each sociodemographic trait of focus. Macro F1 refers to the

unweighted average of F1 scores for each individual class, while weighted F1 refers to

the average of F1 scores for each individual class weighted by class support. Macro F1

scores are more sensitive to error rates in minority classes, while weighted F1 scores

give a better picture of model performance as a whole.
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Table 5.6: Evaluation metrics for majority class baseline
predictions

Trait F1_macro F1_weighted Accuracy
Sex 0.356 0.395 0.554
Ethnicity 0.193 0.484 0.627
Age 0.098 0.160 0.326
Region 0.141 0.220 0.391
Education 0.222 0.333 0.500

5.5 Informed (Single-Task Learning) Baselines

For an informed baseline, Single-task multi-layer perceptron (STL-MLP) models were

trained and evaluated on the trait-specific training/testing subsets described in section

5.2. In each case, the model consisted of an input layer, two dense, fully connected

hidden layers using rectified-linear unit activation and dropout, and an output layer

using soft-max activation over a number of neurons equal to the number of classes in

the target trait. The optimization function used during training was macro-averaged

F1 score. The basic architecture of the informed baseline models is shown in figure 5.1.
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Figure 5.1: Basic model architecture for STL-MLP informed baselines
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All informed baseline models were trained in Keras (Chollet, 2015) using Tensor-

Flow (Abadi et al., 2016) as a back-end. Model hyper-parameters were tuned using

the Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) imple-

mented in Hyperopt (Bergstra et al., 2013), using k-fold cross validation and optimizing

for macro-averaged F1. The hyper-parameters tuned and the distributions over which

they were tuned are reported in table 5.7.

Table 5.7: Hyper-parameter search space

Hyper-Param Search space
batch size {32, 64, 128}
epochs {10, 11, 12, …, 100}
dropout rate {xϵIR | 0.1 ≤ x ≤ 0.9}
kernel initialization {Glorot normal, Glorot uniform, He normal,

He uniform}
optimizer {adam, adadelta, rmsprop, sgd}
hidden_1 size {10, 11, 12, …, 650}
hidden_2 size {10, 11, 12, …, 650}

Final, tuned model parameters can be found in Appendix A.

To obtain a more accurate picture of model performance, a total of five models

were trained using the final, tuned hyper-parameters for each trait of focus. All metrics

for F1, Accuracy, and values in the confusion matrices reported below are the averaged

results of those five training runs for each trait of focus.

5.5.1 Sex

The average macro F1 Score, weighted F1 score, and accuracy values for the five STL-

MLP informed baselines trained to predict speaker sex are presented in table 5.8. The

metrics for the naive, majority class baseline are included for comparison.
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Table 5.8: Evaluaton metrics for sex baseline models

Model F1_macro F1_weighted Accuracy
MajClass 0.356 0.395 0.554
STL_MLP 0.973 0.973 0.973

The informed baselines perform well above the naive baseline for all evaluation

metrics. Figure 5.2 shows a confusion matrix comparing the true labels to the labels

predicted by the informed baselines for the test set. In each cell, the gray text reports

the average number of training samples belonging to that cell over the five informed

baseline training runs, and the black text reports the percentage of samples in that

particular row that are contained within the given cell. Percentages may be interpreted

as the percent of true labels for a given class (represented by row) that received a given

classification prediction (represented by column). Cell shading is computed via the

percentage values.

The high model performance on predicting speaker sex is perhaps unsurprising

given that sex had by far the most number of predictors that reached significance in

appendix C. A two-dimensional t-distributed Stochastic Neighbor Embedding (t-SNE;

van der Maaten and Hinton, 2008) of the training and testing data is presented in

figure 5.3. Each individual point on the plots represents one training or test example.

Diamonds represent class means. The two classes are quite clearly distinct, and nearly

linearly separable. It appears that the features extracted and selected for sex distinguish

these two classes well.

5.5.2 Ethnicity

The average macro F1 Score, weighted F1 score, and accuracy values for the five STL-

MLP models trained to predict speaker ethnicity are presented in table 5.9. The metrics
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Figure 5.3: 2D t-SNE visualization of training (left) and test (right) data for sex.
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for the naive, majority class baseline are included for comparison.

Table 5.9: Evaluaton metrics for ethnicity baseline mod-
els

Model F1_macro F1_weighted Accuracy
MajClass 0.193 0.484 0.627
STL_MLP 0.790 0.879 0.873

As with speaker sex, the informed baselines for ethnicity well outperform the

naive baseline for all evaluation metrics. Though the gains are not as high as those

for sex, ethnicity is a four-way classification problem within this data-set and thus

naturally a more difficult challenge to begin with. Regardless, performance of the STL-

MLP informed baseline models is quite good. Figure 5.4 shows a confusion matrix

comparing the reference labels to the predicted labels for the informed baseline models.

As with sex, the numbers in each cell are averaged over the five training runs, and

percentages are calculated row-wise.

The models appear to have developed quite accurate representations for White

and Asian speakers, with correct identification rates of around 97% and 78% respec-

tively. The models appear to have more difficulty correctly identifying Black and

Hispanic speakers, though correct identification remains around 62-68% for these two

groups. The models appear to have the most difficulty in correctly identifying Hispanic

speakers. This is perhaps unsurprising, as Hispanic speakers were by far the most

under-represented class in the data.
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Figure 5.4: Confusion matrix for STL ethnicity models.
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5.5.3 Age

The average macro F1 Score, weighted F1 score, and accuracy values for the five STL-

MLP models trained to predict speaker age are presented in table 5.10. The metrics

for the naive, majority class baseline are included for comparison.

Table 5.10: Evaluaton metrics for age baseline models

Model F1_macro F1_weighted Accuracy
MajClass 0.098 0.160 0.326
STL_MLP 0.743 0.761 0.759

As with the other traits examined so far, the informed baselines for age outperform

the naive baseline for all evaluation metrics. Figure 5.5 shows a confusion matrix

comparing the reference labels to the predicted labels for the informed baseline models.

As with the previous traits, the number of testing examples that fall into each cell are

averaged over the five training runs, and percentages are calculated row-wise.

For the most part, the model appears to identify age category for reference age

group quite accurately, with a handful of mis-classifications spread out among the non-

reference categories. There appears to be a tendency for misclassification either up or

down one age category for most reference age groups, and a pattern for speakers in the

46-55 reference group to be misclassified as belonging to one of the next two youngest

age groups.
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5.5.4 Region

The average macro F1 Score, weighted F1 score, and accuracy values for the five STL-

MLP models trained to predict speaker region are presented in table 5.11. The metrics

for the naive, majority class baseline are included for comparison.

Table 5.11: Evaluaton metrics for region baseline models

Model F1_macro F1_weighted Accuracy
MajClass 0.141 0.22 0.391
STL_MLP 0.820 0.83 0.830

As with the other traits examined so far, the informed baselines for education

far outperform the naive baseline for F1 and Accuracy. Figure 5.6 shows a confusion

matrix comparing the reference labels to the predicted labels for the informed baseline

models. As with the previous traits, the number of testing examples that fall into each

cell are averaged over the five training runs, and percentages are calculated row-wise.

Overall, performance of the informed baseline models on the region test data is

quite good. Each reference group is correctly identified at least roughly 80% of the

time, with, for the most part, just a handful of speakers from each group misclassified

as belonging to a different region. There does however appear to be a slight tendency

for over-prediction of the Northeast category.
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Figure 5.6: Confusion matrix for STL region models.
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5.5.5 Education

The average macro F1 Score, weighted F1 score, and accuracy values for the five STL-

MLP models trained to predict speaker education are presented in table 5.12. The

metrics for the naive, majority class baseline are included for comparison.

Table 5.12: Evaluaton metrics for education baseline
models

Model F1_macro F1_weighted Accuracy
MajClass 0.222 0.333 0.500
STL_MLP 0.752 0.790 0.794

As with the other traits examined so far, the informed baselines for education

far outperform the naive baseline for F1 and Accuracy. Figure 5.7 shows a confusion

matrix comparing the reference labels to the predicted labels for the informed baseline

models. As with the previous traits, the number of testing examples that fall into each

cell are averaged over the five training runs, and percentages are calculated row-wise.

As with the previous traits, each class for education is correctly identified with a

reasonable degree of accuracy. Assuming the underlying trait of education years forms

a continuum, one would expect the highest rates of misclassification to be off-by-one

errors either up or down a class, and thus would expect classes representing the poles of

that continuum to receive the lowest rates of misclassification, as these classes only have

one neighboring class to be confused with as opposed to two. This is in fact the pattern

observed for age in section 5.5.3. Interestingly however, correct classification for the

middle ‘college’ education class is highest at around 89%, while correct classification of

the pole classes is somewhat lower– roughly 70% for each. Even more interestingly, the

most frequent misclassification error is misclassifying speakers in the highest education
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class as speakers belonging to the lowest education class. It is unclear what may be

contributing to this particular misclassification pattern, though this may be in part

due to the fact that the number of education years reported by speakers in the data-set

may not always line up with the traditional education distinctions assumed in creating

the three education experience buckets into which speakers have been placed for the

purpose of this data-set.

5.6 Discussion

This chapter has established both naive and informed baselines against which to com-

pare the Multi-Task Models which are the focus of this dissertation. These baselines

also provide some insight into the informativeness of the extracted predictor features

described in chapters 3 and 4 for each of the sociodemographic traits of focus. These

features are particularly informative for predicting speaker sex, and the high perfor-

mance of the models reported in section 5.5.1 leaves little room for improvement for

the multi-task models. Performance of the informed baselines for ethnicity, age, educa-

tion, and region is also quite high, though there is still quite a bit of room to grow for

these tasks.

Overall, it appears that the features identified and discussed in chapter 4 perform

reasonably well in distinguishing among the sociodemographic categories examined in

this dissertation. An exploration of the relative contribution of each type of predictive

feature to model performance for each sociodemographic trait is presented in chapter

7.

Chapter 6 reports performance of the MTL models and compares them to the

baselines developed in this chapter. A detailed discussion comparing the STL and

MTL models can be found in chapter 8.
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Chapter 6: Results

The following sections present the basic structure and training procedure for the Multi-

Task Learning Multi-Layer Perceptron (MTL-MLP) models, as well as evaluation met-

rics summarizing MTL model performance on the testing data. Performance of the

MTL models on the test sets is compared to both naive baseline (majority class) model

performance as well as informed baseline (STL-MLP) model performance on the same

test sets.

6.1 Training and Testing Data

The data sets used to train and test the MTL-MLP models were the same data-sets used

in chapter 5 to train and test the baseline models. Performance of all models discussed

in this dissertation is therefore directly comparable. Refer to chapter 5 for a detailed

description of the preprocessing and subsetting operations involved in generating these

testing and training data sets.

6.2 Multi-Task Learning Model Description

For each trait of focus, the basic architecture of the MTL-MLP models was as follows.

Each model was comprised of one shared, fully connected hidden layer using rectified-
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linear unit activation and dropout, which then fed five separate (trait-specific) fully

connected hidden layers also using rectified-linear activation and dropout. The trait-

specific hidden layers each fed an individual output layer using soft-max activation over

a number of neurons equal to the number of classes in the target trait for that specific

output layer. A masking layer was applied directly prior to each trait-specific output

layer, so as to eliminate error back-propagation from that output layer in cases where the

class label for that particular trait was unknown for a given training example. Output

layers for each individual trait were assigned a weight between 0.1 and 1.0, used in

calculating overall loss during training. The optimization function used during training

was macro-averaged F1 score. Each model took as inputs the training data as well as

five masking tensors (one for each trait of focus), and had as outputs class probabilities

for each of the five traits of focus.

One can conceive of the MTL model design somewhat like a tree with five separate

branches. The model inputs and the shared hidden layer make up the ‘trunk,’ and each

trait has its own ‘branch’ consisting of a hidden layer, a masking layer, and an output

layer which are specific to that particular trait. The weight assigned to the output layer

for each ‘branch’ determines the degree of importance that particular branch is given

during model training. A diagram of the MTL network design used for the models

reported in this chapter is shown in figure 6.1. The design in figure 6.1 only includes

the first two ‘branches’ of the MTL models, sex and ethnicity, for reasons of space. The

three branches left out of figure 6.1 are identical in structure to the sex and ethnicity

branches, and all MTL models included all 5 branches.

All MTL-MLP models were trained in Keras (Chollet, 2015) using TensorFlow

(Abadi et al., 2016) as a back-end. Model hyper-parameters were tuned using the Tree-

structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) implemented in

Hyperopt (Bergstra et al., 2013), using k-fold cross-validation and optimizing for macro-
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Figure 6.1: Basic model design for MTL-MLP models
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averaged F1. The hyper-parameters tuned and the distributions over which they were

tuned are reported in table 6.1. The final tuned hyper-parameters used in the models

reported below for each trait of focus may be found in appendix B.

Table 6.1: Hyper-parameter search space for MTL-MLP
models

Hyper-Param Search space
batch size {32, 64, 128}
epochs {10, 11, 12, …, 100}
dropout rate {dϵIR | 0.1 ≤ d ≤ 0.9}
kernel initialization {Glorot normal, Glorot uniform, He normal,

He uniform}
optimizer {adam, adadelta, rmsprop, sgd}
shared layer size {10, 11, 12, …, 650}
trait-specific layer size {10, 11, 12, …, 650}
trait-specific loss weight {wϵIR | 0.1 ≤ w ≤ 1.0}

While each MTL model by design produced predictions for each of the five traits of

focus in this dissertation, only predictions for the trait for which a particular model was

specifically tuned are reported below. Models tuned to predict a particular trait used

the testing and training subsets of the NIST corpus specific to that trait as described

in section 5.2. For example, models tuned to predict ethnicity were hyper-parameter

tuned, trained, and evaluated using the ethnicity training and testing subsets on which

the ethnicity STL-MLPs were tuned, trained and evaluated, models tuned to predict

sex were tuned, trained, and evaluated using the sex training and testing subsets on

which the sex STL-MLPs were tuned, trained, and evaluated, and so on.
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6.3 Multi-Task Learning Model Evaluation

The following sections report model evaluation metrics averaged over five independent

training runs for each individual trait of focus.

6.3.1 Sex

The average macro F1 Score, weighted F1 score, and accuracy values for the five MTL-

MLP models trained to predict speaker sex are presented in table 6.2. The metrics for

the naive, majority class baseline as well as the informed, STL baseline are included for

comparison.

Table 6.2: Evaluaton metrics for sex models

Model F1_macro F1_weighted Accuracy
MajClass 0.356 0.395 0.554
STL_MLP 0.973 0.973 0.973
MTL_MLP 0.980 0.981 0.981

The MTL models appear on average to provide a slight boost over the STL models

across the board. Figure 6.2 shows a confusion matrix comparing the true labels to the

labels predicted by the MTL models for the test set. In each cell, the gray text reports

the average number of training samples belonging to that cell over the five MTL training

runs, and the black text reports the percentage of samples in that particular row that

are contained within the given cell. Percentages may be interpreted as the percent

of true labels for a given class (represented by row) that received a given classification

prediction (represented by column). Cell shading is computed via the percentage values.

Comparing the confusion matrix for MTL predictions in figure 6.2 to the confu-
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Figure 6.2: Averaged confusion matrix from the MTL training runs for sex.

sion matrix for STL predictions in figure 5.2, it seems the main area of improvement

for the MTL models over the STL models is in properly classifying males. Incorrect

identification of males as females dropped from 3.9% in the STL predictions to 2.6% in

the MTL predictions. Improvement on classification error for females was more modest,

dropping from 1.7% in the STL predictions to 1.4% in the MTL predictions.

6.3.2 Ethnicity

The average macro F1 Score, weighted F1 score, and accuracy values for the five MTL-

MLP models trained to predict speaker ethnicity are presented in table 6.3. The metrics

for the naive, majority class baseline as well as the informed, STL baseline are included

for comparison.
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Figure 6.3: Averaged confusion matrix from the MTL training runs for ethnicity.

Table 6.3: Evaluaton metrics for ethnicity models

Model F1_macro F1_weighted Accuracy
MajClass 0.193 0.484 0.627
STL_MLP 0.790 0.879 0.873
MTL_MLP 0.785 0.884 0.878

It appears that the MTL models for ethnicity slightly under-perform the STL

models in terms of macro-F1 and slightly over-perform the STL models in terms of

weighted F1 and Accuracy. Figure 6.3 shows a confusion matrix comparing the reference

labels to the predicted labels for the MTL models. As with the previous traits, the

number of testing examples that fall into each cell are averaged over the five training

runs, and percentages are calculated row-wise.

Comparing the confusion matrix for the MTL models in figure 6.3 to the confusion
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matrix for the STL models in figure 5.4, it appears that the MTL models perform

about the same as the STL models in identification of White speakers (0.5% error rate

increase) but seriously under-performed the STL models in identification of Hispanic

speakers (12.5% error rate increase). These two groups represent the extreme majority

and minority classes, respectively. On the other hand, the MTL models outperformed

the STL models in identification of the middle two classes, Black and Asian speakers,

reasonably well– reducing error rates by 6.2% and 3.3% respectively. The gains in

identification of Black and Asian speakers were sufficient to make up for the losses in

identification of Hispanic speakers and give MTL models the edge in terms of weighted

F1 and accuracy.

6.3.3 Age

The average macro F1 Score, weighted F1 score, and accuracy values for the five MTL-

MLP models trained to predict speaker age are presented in table 6.4. The metrics for

the naive, majority class baseline as well as the informed, STL baseline are included for

comparison.

Table 6.4: Evaluaton metrics for age models

Model F1_macro F1_weighted Accuracy
MajClass 0.098 0.160 0.326
STL_MLP 0.743 0.761 0.759
MTL_MLP 0.758 0.771 0.769

As with sex, the MTL models appear to have a slight advantage over the STL

models across the board. Figure 6.4 shows a confusion matrix comparing the reference

labels to the predicted labels for the MTL models. As with the previous traits, the

number of testing examples that fall into each cell are averaged over the five training
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Figure 6.4: Averaged confusion matrix from the MTL training runs for age.

runs, and percentages are calculated row-wise.

Comparing the confusion matrix for the MTL predictions in figure 6.4 to the

confusion matrix for STL predictions in figure 5.5, the main areas of improvement for

MTL models over STL models are in classification of speakers age 56+ (the minority

class) and speakers age 26-35 (the majority class), with roughly 2.8% and 2.7% error

rate reductions, respectively. Identification error also went down in the MTL models

compared to the STL models for speakers age 46-55; roughly a 1.5% reduction in error

rate. Error rates for the other classes were roughly 0.5%-1% better for the STL models.
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6.3.4 Region

The average macro F1 Score and accuracy values for the five MTL-MLP models trained

to predict speaker region are presented in table 6.5. The metrics for the naive, majority

class baseline as well as the informed, STL baseline are included for comparison.

Table 6.5: Evaluaton metrics for region models

Model F1_macro F1_weighted Accuracy
MajClass 0.141 0.22 0.391
STL_MLP 0.820 0.83 0.830
MTL_MLP 0.818 0.83 0.829

For region, the STL and MTL models appear to be nearly identical in terms of

evaluation metrics, with STL models having a minuscule edge in terms of macro F1 and

overall accuracy. Figure 6.5 shows a confusion matrix comparing the reference labels

to the predicted labels for the MTL models. As with the previous traits, the number

of testing examples that fall into each cell are averaged over the five training runs, and

percentages are calculated row-wise.

In comparing the MTL confusion matrix in figure 6.5 with the STL confusion

matrix in figure 5.6, it appears that the MTL models perform slightly better than

the STL models on the majority class (Northeast, 0.8% error rate reduction) and the

minority class (West, 2.4% error rate reduction). The STL models however outperform

the MTL models by 4.6% on identification of the Midwest speakers.
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Figure 6.5: Averaged confusion matrix from the MTL training runs for region.

6.3.5 Education

The average macro F1 Score and accuracy values for the five MTL-MLP models trained

to predict speaker education are presented in table 6.6. The metrics for the naive, ma-

jority class baseline as well as the informed, STL baseline are included for comparison.

Table 6.6: Evaluaton metrics for education models

Model F1_macro F1_weighted Accuracy
MajClass 0.222 0.333 0.500
STL_MLP 0.752 0.790 0.794
MTL_MLP 0.758 0.800 0.802
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Figure 6.6: Averaged confusion matrix from the MTL training runs for education.

Though quite similar, the MTL models slightly outperform the STL models on all

three evaluation metrics. Figure 6.6 shows a confusion matrix comparing the reference

labels to the predicted labels for the MTL models. As with the previous traits, the

number of testing examples that fall into each cell are averaged over the five training

runs, and percentages are calculated row-wise.

In comparing the MTL confusion matrix in figure 6.6 with the STL confusion

matrix in figure 5.7, it appears that the MTL models outperform the STL models on

identification of the two most represented education groups in the corpus, with a 0.5%

reduction of error rate in the majority class (college) and a 3% reduction in error rate

for the next most represented class (post-college). The STL models outperformed the

MTL models by roughly 3.4% in identification of the minority class (no-college).
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6.4 Discussion

While the STL and MTL models appear to be quite close in terms of the selected

evaluation metrics on the test sets, on the whole it does appear that in most cases

using an MTL network design offered incremental improvement over an STL design.

Interestingly there appears to be a slight tendency for MTL models to outperform STL

models particularly in identification of well-represented (majority) classes. There may

also be a very slight tendency to under-perform STL models on identification of the

most extreme under-represented classes. This tendency and broader ramifications of

the findings presented in this chapter are discussed in chapter 8.
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Chapter 7: Feature Importance

Prior to discussing the differences between the performance of the STL and MTL net-

work architectures, it is instructive to examine the relative weight that each type of

model gave to each type of feature.

7.1 Measuring Feature Importance

The method for quantifying feature importance used in the following sections is an ap-

plication of the permutation importance approach (Breiman, 2001; Fisher et al., 2018).

The idea underlying permutation importance is that by randomly shuffling the data for

one particular feature in the test set (thereby effectively scrambling the signal for that

predictor while maintaining the original variance and mean) and measuring model per-

formance before and after the shuffle, one can obtain a measurement for how strongly

the model relies on that feature to make accurate predictions. In cases where a fea-

ture shuffle has a small impact on overall model performance, one can assume that the

model does not rely much on that particular feature. In cases where shuffling the data

for a particular feature severely degrades model performance, one can assume that the

model relies heavily on that feature in making predictions.

The reference metric by which random permutation impact on model performance

is measured in this chapter is macro F1. For each trait, macro F1 scores were extracted
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from the predictions of the highest performing model for each of the STL and MTL

architectures using the original testing data. For each feature, the testing data for

that feature were then randomly permuted and predictions were run again. Permuted

prediction scores for macro F1 (F1perm) were then subtracted from reference prediction

scores (F1ref ) and subsequently normalized in order to obtain the percentage of error

rate increase (ERI) resulting from each feature permutation as shown in equation

(7.1). The higher the ERI caused by random permutation of a given feature, the more

important that feature was to obtaining accurate predictions in the test-set.

ERI = F1ref − F1perm

F1ref

∗ 100 (7.1)

Error rate increase was calculated both on an individual basis as well as on a fea-

ture group basis. Group ERI scores were calculated by permuting all features belonging

to a particular group in the testing data at once and then comparing predictions on

the group-permuted data to the reference predictions in the same manner as shown in

equation (7.1). The top 50 most important individual features per model as well as

the overall importance of each feature group per model are presented in the following

sections.

It should be noted that measuring feature importance in complex neural networks

such as the models in question below is necessarily a fraught and not entirely straight-

forward task. Individual features may interact with one another in the internal layers

of the models, and calculating individual feature importance by permuting one feature

at a time may not take into account this sort of internal interaction. Likewise, in situ-

ations where two or more features are similarly important but substantially mutually

redundant, although having at least one of these features present may be important

to model predictions, calculating permutation scores on an individual basis will likely
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lead to misleadingly low importance scores for all features in the group. Finally, as per-

mutation importance is calculated below by applying pre-trained models to randomly

permuted test data, the importance scores may be affected by random quirks of the

test-set. In essence, all feature importance metrics reported in this chapter should be

taken with a grain of salt. That said, measuring permutation importance for individual

features and groups of features may still allow us to glean a general overview of what

types of features are important for which types of models, and may help to elucidate

some of the differences between the STL and MTL architectures.

7.2 Sex

7.2.1 Individual feature importance

Figures 7.1 and 7.2 present a comparison of the top 50 most important features for

the best performing STL and MTL models, respectively, trained to predict speaker sex.

Feature group is color-coded: lexical features are presented in grey, phonetic features

in red, and acoustic features in turquoise.

Unsurprisingly, several of the acoustic features examined (mean pitch, jitter, shim-

mer, HNR) are near the top for both model architectures. For the MTL model, mean

pitch is by far the most important feature, with random permutation of mean pitch

degrading model performance by roughly 0.6%. A number of phonetic features make

it into the top 50 as well, including both summary statistics of the vowel space as a

whole (e.g. vowel space area, mean F1) and measurements of specific vowels at specific

trajectory points (e.g. onset of EY along F2, off-glide of IY along F2). The acoustic

and phonetic features included in the top 50 features in figures 7.1 and 7.2 generally

line up with expectations and the observations made in chapter 4.
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Figure 7.1: Top 50 individual sex features for STL architecture
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Figure 7.2: Top 50 individual sex features for MTL architecture
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The lexical features that make it into the top 50 for each model are a bit more

surprising.1 First, the fact that the top 8 features for the STL model are lexical is

contrary to expectations. Given the clear differences between male and female speakers

for acoustic and phonetic variables shown in chapter 4, especially mean pitch, one would

have expected more model reliance on these features than on any individual lexical

feature. Second, the types of lexical features that are most important in these models

do not line up with the types of lexical features that were found to be most important

according to information gain for distinguishing between the sexes in chapter 4. Nearly

all of the top lexical features according to information gain in chapter 4 included either

a gendered kinship term (e.g. “husband”, “wife”, “daughter”), a discourse marker (e.g.

“like”, “oh”, “yeah”) or a pause filler (e.g. “uh”, “um”, “uhhuh”). While many of the

lexical features in the top 50 do belong to these groups (e.g. “stuff like”, “beautiful um”,

“my daughter”), several of them also consist of specific content words (e.g. “throat”,

“immigration reform”, “concrete”). It’s possible that the high importance placed on

specific content words in these models may be a result of covert over-fitting– that is,

over-fitting not necessarily to the training set specifically, but rather to this corpus as a

whole.2 While apparently specific lexical items such as these were important predictors

both in the training and test sets (otherwise the models would not have paid attention

to them in training and they would not have such a high impact in testing), these

features are unlikely to generalize to other corpora.
1Though it should perhaps be noted again here that, as mentioned in chapter 2, while the focus

of most of the signal processing and sociolinguistic work on sex identification/differentiation has been
on acoustic and phonetic features, a wide range of studies attempting to identify the sex of authors of
textual data has shown that lexical features can be highly reliable for this task (e.g. Rao et al., 2010).

2This type of covert over-fitting phenomenon has been recently documented for lexical features used
in other computational linguistics tasks as well. See for example Moosavi and Strube (2017).
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Table 7.1: Feature group importance: Sex STL

group group error increase mean individual error increase
lexical 20.03% 0.002%
phonetic 2.94% 0.009%
acoustic 0.87% 0.097%

Table 7.2: Feature group importance: Sex MTL

group group error increase mean individual error increase
lexical 27.4% 0.009%
phonetic 2.9% 0.054%
acoustic 1.24% 0.202%

7.2.2 Feature type importance

Tables 7.1 and 7.2 present the overall permutation importance for each feature group

calculated for macro F1, as well as the mean of the individual ERI scores for each

feature belonging to that group.

At first glance, both architectures appear to place much more importance on lex-

ical features than phonetic or acoustic features. This is somewhat misleading however,

as there were nearly ten times as many lexical features included in the data-set as

there were phonetic and acoustic features combined. The mean macro f1 scores for

individual features of each type make clear that, though as a whole lexical features

were enormously important to model predictions, lexical features on average were less

important individually to the model than acoustic and phonetic features.

Interestingly, it appears that the STL model is a bit more robust to poor signal

quality within a given feature type than the MTL model overall. While permuting the

phonetic features degraded model performance roughly equivalently in both STL and

MTL models, permuting the Lexical and Acoustic features degraded model performance
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substantially more for the MTL model than the STL model.

7.3 Ethnicity

7.3.1 Individual feature importance

Figures 7.3 and 7.4 present a comparison of the top 50 most important features for

the best performing STL and MTL models, respectively, trained to predict speaker

ethnicity. Feature group is color-coded: lexical features are presented in grey, phonetic

features in red, and acoustic features in turquoise.

The most noticeable difference between the STL and MTL models in terms of

feature importance is that the vast majority of the 50 most important features for the

MTL model are lexical, whereas the set of top 50 features for the STL model has many

more phonetic and acoustic features mixed in. This difference is somewhat difficult

to interpret. It may have to do with the interaction between ethnicity and other so-

ciodemographic traits and the fact that the MTL model is simultaneously developing

representations of all traits whereas the STL model is singularly developing representa-

tions of ethnicity. For instance, the ethnic categories in both the training and testing

sets are imbalanced with respect to sex– the two largest ethnic classes (White and

Black) are predominantly female, whereas the two least frequent ethnic classes (Asian

and Hispanic) are roughly evenly split between male and female. It’s reasonable there-

fore to assume that some representation of speaker sex may be useful in predicting

speaker ethnicity. The STL model may be relying directly on features such as pitch,

HNR and jitter to model the relationship between sex and ethnicity whereas the MTL

model may have developed other, more complex relationships within the shared layers

that indicate speaker sex but which are more resilient to the presence or absence of any
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Figure 7.3: Top 50 individual ethnicity features for STL architecture
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Figure 7.4: Top 50 individual ethnicity features for MTL architecture
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Table 7.3: Feature group importance: Ethnicity STL

group group error increase mean individual error increase
lexical 78.33% 0.019%
acoustic 0.7% 0.336%
phonetic 0.25% 0.216%

Table 7.4: Feature group importance: Ethnicity MTL

group group error increase mean individual error increase
lexical 66.95% 0.036%
phonetic 5.47% -0.045%
acoustic 0.27% 0.058%

individual acoustic or phonetic feature.

7.3.2 Feature type importance

Tables 7.3 and 7.4 present the overall permutation importance for each feature group

calculated for Macro F1, as well as the mean of the individual ERI scores for each

feature belonging to that group.

Both architectures appear to rely much more heavily on lexical features for eth-

nicity prediction relative to sex prediction, unsurprisingly. Interestingly, there appears

to be a bit of a trade-off between reliance on lexical vs. phonetic features between the

two architecture types, with MTL relying a bit more on the phonetic feature group

and quite a bit less on the lexical feature group than the STL model. This is contrary

to the distribution of feature groups seen in figures 7.3 and 7.4, and indicates that we

should be cautious in drawing conclusions about overall model behavior from examining

individual feature importance from just the top 50 most important features alone. It

appears that, while more phonetic features individually make it into the top 50 for the
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STL model than the MTL model, phonetic features as a group are more than 5 times

more important in the MTL model than in the STL model.

Oddly, though the group importance of phonetic features is relatively substantial

for the MTL model, the mean macro F1 score for phonetic features individually is

actually negative. Negative importance scores indicate that the random permutation

helped rather than hindered model performance– in other words, a negative importance

score indicates that a feature is worse than random noise in terms of test-set predictions.

The fact that while phonetic features individually were on average slightly worse than

random noise yet as a block contributed to a 5.47% reduction in error rate in the

MTL model is consistent with the notion developed above that the predictive power

of these features in the MTL model stems from inter-feature interactions within the

shared hidden layer which are relatively resilient to the removal of any one particular

feature. This also highlights the importance of calculating feature group importance by

permuting all features within that group simultaneously and calculating ERI based on

the resulting predictions rather than simply adding together the individual importance

scores for each feature within the group. Summing the ERI scores for each individual

phonetic feature for the MTL ethnicity model results in a net ERI score of -5.94%, which

would erroneously indicate that replacing all phonetic features with random noise would

increase model performance by 5.94%. What we actually find is completely the opposite:

replacing all phonetic features with random noise actually decreases model performance

by 5.47%.
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Figure 7.5: Top 50 individual age features for STL architecture

7.4 Age

7.4.1 Individual feature importance

Figures 7.5 and 7.6 present a comparison of the top 50 most important features for

the best performing STL and MTL models, respectively, trained to predict speaker age.

Feature group is color-coded: lexical features are presented in grey, phonetic features

in red, and acoustic features in turquoise.

As with ethnicity, the models trained to predict speaker age appear to rely pre-

dominantly on lexical features, with a handful of acoustic and phonetic features cracking

the top 50. In chapter 4 we saw that those ngrams which had the highest information

gain for age tended to be those including either discourse markers or slang terms that
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Figure 7.6: Top 50 individual age features for MTL architecture

showed a high degree of age-related differential usage (e.g. “yeah”, “like”, “cool”) or

terms that may be indicative of life-stage (e.g. “daughter”, “wife”). The lexical features

in the top fifty for the age models do include quite a few ngrams of this sort (e.g. “my

dad”, “job”, “also like” for STL; “it like”, “like not”, “daughter” for MTL).

As with those models trained to predict sex however, many of the lexical features

in the top fifty for model importance also contain specific content words that one would

not expect given the information gain findings from chapter 4. The top 3 features for

the MTL model for instance– each nearly twice as important as the next most important

feature– include none of the sorts of lexical items one would expect. Oddly, a number of

the top fifty features for the STL model are ngrams containing toponyms (“kentucky”,

“north carolina”, “michigan”, “detroit”). These toponyms all belong to the South and

Midwest regions according to the coding schema used in this dissertation, which also

happen to be the regions that skew the oldest. Recall from chapter 4 that there are far
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Table 7.5: Feature group importance: Age STL

group group error increase mean individual error increase
lexical 71.73% 0.034%
phonetic 1.02% 0.029%
acoustic 0.04% 0.058%

Table 7.6: Feature group importance: Age MTL

group group error increase mean individual error increase
lexical 71.96% 0.022%
phonetic 0.43% 0.064%
acoustic -0.2% -0.062%

more younger speakers than older speakers in the data-set, and from chapters 5 and

6 that both STL and MTL models had more difficulty correctly identifying speakers

belonging to the older age groups than those belonging to the younger age groups. It’s

possible that both the STL and MTL models trained to predict speaker age are to some

degree reliant on a representation of speaker region to identify speakers belonging to

older age groups, thereby taking advantage of the imbalance in the data-set between

regions with respect to age, but that the MTL model does this indirectly via features

jointly developed by the region and age output layers in the shared hidden layer during

training whereas the STL model needs to do this more directly by relying on toponyms

since it doesn’t have any other way to represent the relation between region and age.

7.4.2 Feature type importance

Tables 7.5 and 7.6 present the overall permutation importance for each feature group

calculated for Macro F1, as well as the mean of the individual ERI scores for each

feature belonging to that group.

211



As with ethnicity, both architectures are heavily reliant on lexical features. Per-

muting the lexical features reduces the macro F1 prediction score by roughly 72% in

both cases. In contrast, permuting phonetic features impacts the macro F1 prediction

score by at most roughly 1%, and permuting the acoustic features has essentially no

effect in the STL model and actually improves performance in the MTL model by 0.2%.

It seems clear that, with a few phonetic feature exceptions, the high performance of the

STL and MTL models on age prediction seen in chapters 5 and 6 are almost entirely

driven by lexical features.

7.5 Region

7.5.1 Individual feature importance

Figures 7.7 and 7.8 present a comparison of the top 50 most important features for the

best performing STL and MTL models, respectively, trained to predict speaker region.

Feature group is color-coded: lexical features are presented in grey, phonetic features

in red, and acoustic features in turquoise.

The models trained to predict speaker region appear to rely predominantly on

lexical features, with just a couple of phonetic features making it into the top 50. As

expected, acoustic features appear to have little impact on the region models.

Interestingly, though the top ngrams according to information gain for region from

chapter 4 were, predictably, heavily centered around toponyms, relatively few toponyms

make it into the top 50 most important features for either model. One explanation for

this may lie in the nature of the metrics in question. Information Gain is at heart a

measure of purity within groups delineated by a particular splitting factor. For instance,

nearly every mention of “bay area” in the corpus belongs to a speaker from the Western
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Figure 7.7: Top 50 individual region features for STL architecture
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Figure 7.8: Top 50 individual region features for MTL architecture
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Table 7.7: Feature group importance: Region STL

group group error increase mean individual error increase
lexical 68.76% 0.035%
phonetic 4.13% -0.032%
acoustic 0.39% 0.021%

Table 7.8: Feature group importance: Region MTL

group group error increase mean individual error increase
lexical 67.36% 0.049%
phonetic 2.54% 0.083%
acoustic 0.02% 0.007%

region. Splitting the data based on mention of “bay area” therefore leads to a very

pure sub-sample of speakers form the west, and thus high information gain. “Bay area”

however is a relatively rare term used by few speakers, and the category of western

speakers is a minority regional class in the data-set, so the actual predictive power

of this particular feature is relatively low. On the whole, the lexical features with the

highest ERI scores in both models seem to have a tendency to include discourse markers

and pause fillers (e.g. “oh man”, “see um”, “yep”, “yeah”). That the models appear

to be paying more attention to the distribution of discourse markers and pause fillers

rather than to specific toponyms is likely a good thing in terms of model generalization,

as these items are far more frequent than toponyms in most genres of communication.

7.5.2 Feature type importance

Tables 7.7 and 7.8 present the overall permutation importance for each feature group

calculated for Macro F1, as well as the mean of the individual ERI scores for each

feature belonging to that group.
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As expected from section 7.5.1 both architectures are heavily reliant on lexical

features. Permuting the lexical features reduces the macro F1 prediction score by

roughly 68% in both cases. In contrast, permuting the phonetic features impacts the

macro F1 prediction score by roughly 2.5-4%, and permutation of the acoustic features

impacts model performance less than half a percentage point at most. It seems clear

that, with a few phonetic feature exceptions, the high performance of the STL and

MTL models on region prediction seen in chapters 5 and 6 are predominantly driven

by lexical features. Though the difference is small, it also appears that the STL model

for region is a bit more reliant on phonetic features than the MTL model.

It’s somewhat odd that phonetic features would have such a small impact on

models trained to predict region. Regional phonetic differences are, after all, one of

the primary pillars of traditional dialectology, and the basis for numerous dialectal di-

visions that sociolinguists and dialectologists often take for granted. There are a few

possibilities for why phonetic features appear to contribute little to the overall predic-

tive accuracy of the models as compared to lexical features. First, recall that each

individual speech segment used as a data point in this dissertation is roughly 60 sec-

onds long. It’s possible that within this small time frame it is simply impossible to

gather enough phonetic data to create an accurate representation of a speaker’s pho-

netic landscape. This is likely particularly true for rarer phonemes– some of which are

particularly important in drawing regional distinctions. Second, because the segments

are so short for individual speakers, phonemes in this dissertation are not sub-divided

in terms of surrounding phonetic context. Some of the regionally-specific phonetic

phenomena identified in the dialectology literature are contextually dependent, and

therefore not accounted for in the system deployed here. It’s possible that if individual

segments included larger chunks of speech, and if surrounding phonetic context for each

phoneme were taken into account, phonetic features might be more useful to the models

than they currently are.
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Figure 7.9: Top 50 individual education features for STL architecture

7.6 Education

7.6.1 Individual feature importance

Figures 7.9 and 7.10 present a comparison of the top 50 most important features for

the best performing STL and MTL models, respectively, trained to predict speaker

education. Feature group is color-coded: lexical features are presented in grey, phonetic

features in red, and acoustic features in turquoise.

As with most other traits examined in this chapter, the models trained to predict

speaker education appear to rely predominantly on lexical features, with several acoustic

and phonetic features mixed in to the top 50. The presence of acoustic features in the

top 50 for both models seems on it’s face somewhat odd, though recall from chapter
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Figure 7.10: Top 50 individual education features for MTL architecture

4 that the education groups are somewhat unbalanced when it comes to speaker sex.

The “no college” group, in addition to being by far the minority education group, is

also predominantly male, whereas the “college” group is predominantly female and

the “post-college” group is relatively balanced. It seems likely that the reliance on

acoustic features in the models trained to predict speaker education is an artifact of

this difference, in that male-indicative features may be useful in predicting the minority

education class.

This sort of cross-over pattern in which models trained to predict trait A appear

to take advantage of inter-group imbalance with respect to trait B by relying on input

features directly related to trait B is found in the STL models for ethnicity and age as

well. It is thus perhaps not surprising that a similar phenomenon would be observed

here in the STL model for education. However, education is the only trait examined for

which the corresponding MTL model also exhibits this pattern. For ethnicity and age,
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the hypothesis was put forward above that while the MTL models represent relations

between target and non-target traits via interactional features jointly developed in the

shared hidden layer during training, the STL models need to do this more directly by

relying on input features directly related to non-target traits, since they don’t have

any other way to represent the relation between target and non-target traits. If this

hypothesis holds water, one would not expect the top 50 most important traits for

the MTL model for education to include acoustic input features directly related to sex.

That acoustic features do appear in the top 15 most important traits for the MTL

education model may be an artifact of the difficulty of predicting speaker education.

F1 macro scores for the STL and MTL models for education overall are around 0.75.

These are some of the lowest overall scores found among the models trained in this

dissertation. The closest overall scores are those for the age models, which also hover

around 0.75. However, age is a 5-way discrimination task whereas education is a 3-way

discrimination task. It may be that there is simply not a strong enough signal in the

data as it relates to education for the sorts of jointly-developed, hidden-layer features

hypothesized to be present in MTL models targeted at other traits to come to fruition

in the MTL models targeted at education.

7.6.2 Feature type importance

Tables 7.9 and 7.10 present the overall permutation importance for each feature group

calculated for Macro F1, as well as the mean of the individual ERI scores for each

feature belonging to that group.

As with all other traits examined, with the exception of speaker sex, the models

trained to predict speaker education are overwhelmingly reliant on lexical features to

make accurate predictions. There does not appear to be a large difference in terms of the
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Table 7.9: Feature group importance: Education STL

group group error increase mean individual error increase
lexical 58.05% 0.031%
acoustic 1.14% 0.447%
phonetic -1.68% 0.187%

Table 7.10: Feature group importance: Education MTL

group group error increase mean individual error increase
lexical 55.33% 0.03%
acoustic 1.31% 0.1%
phonetic -0.96% 0.023%

importance of each type of feature to the STL and MTL models, though the STL model

appears slightly more reliant on lexical features than the MTL model. The phonetic

feature group ERI for both models is negative, indicating that phonetic features had,

at best, little to no impact on education predictions.

7.7 Discussion

7.7.1 Multi- vs. uni-factorial systems (research question 1)

The first research question laid out in chapter 1 was whether a multi-factorial system–

that is, a system which incorporates features from multiple linguistic levels– meaning-

fully increases performance over a system including features of only one particular type.

While no models were trained with solely one individual type of feature, the feature

group permutation importance results from this chapter nonetheless allow us to speak

to this question.

In no cases were the models tested completely unreliant on more than one of
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the three feature type groups tested– that is to say, each model tested was somewhat

reliant on at least two of the three feature types to some degree. Whether a model is

meaningfully reliant on more than one type of linguistic feature however depends on

one’s definition of what is a meaningful reduction of error. For instance, those models

that showed the strongest reliance on one individual feature group were the STL model

for ethnicity (78.33%, 0.70%, and 0.25% model reliance on lexical, acoustic and phonetic

features, respectively) and the MTL model for age (71.96%, 0.43% and -0.2% model

reliance on lexical, phonetic, and acoustic features, respectively). If one determines a

meaningful reduction of error rates to be a reduction of at least 1%, These two models

may be considered to be wholly reliant on lexical features. Regardless, if one wants to

achieve the highest classification performance possible, it does appear from the feature

group permutation importance results that for all social traits examined one should

include features from at least two of the three linguistic levels incorporated here.

In sum, if one desires the best possible results, a multi-factorial approach is best

for all social traits. Depending on the trait in question and the tolerance for error in the

application in question however, a multi-factorial approach may not always be worth

the effort.

7.7.2 Feature type importance (research question 2)

The second research question laid out in chapter 1 addresses the relative predictive

power of features from different linguistic levels on automated prediction of the five

social traits examined here. Much of the existing computational literature on automated

author profiling has focused on textual corpora rather than spoken corpora, and thus

has focused almost entirely on the predictive power of lexical features for predicting

author traits. However, most of the existing work on spoken corpora has tended to
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focus on acoustic and to a lesser degree phonetic features, generally to the exclusion of

lexical features. It is unclear from the existing literature whether the lexical features

focused on in the textual corpora work would carry over to spoken corpora.

The results presented in this chapter provide quite clear evidence that this is

indeed the case– lexical features appear to carry the majority of the predictive burden

for all sociodemographic traits examined. However, the inclusion of phonetic, and to

a certain degree acoustic features can, depending on the target trait, also provide a

meaningful reduction in error rates. This is particularly true for ethnicity, region, and

sex, for which the inclusion of phonetic features provided a decrease in error rate of

between 2.5% - 5.5% depending on the model. There are some target traits however for

which inclusion of phonetic or acoustic traits appears from the results presented above

to be at best unnecessary and at worst detrimental. Education and Age in particular

both benefited little from either acoustic or phonetic traits, and in the case of education

the inclusion of phonetic features appears to have hurt overall performance.

Overall, the MTL and STL architectures appear to give largely the same weight to

the different feature types. There does appear to be a slight tendency in the STL models

to place a higher reliance than MTL models on input features that directly relate to

non-target sociodemographic traits which may offer clues to target-trait classification,

such as the relatively high importance placed on several acoustic features for the STL

ethnicity model and the relatively high importance placed on certain toponyms for the

STL age model.

7.7.3 Implications

The implications of the feature importance results presented above vary depending on

the use case, data genre, and target sociodemographic traits to which an automated
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speaker profiling system is applied. If it is crucial for an application to be as accurate

as possible and the target trait is any of those examined in this dissertation other than

education, it appears to be best to include all three types of features examined here–

acoustic, phonetic, and lexical.

If however resources are scarce in terms of available development time, on-staff lin-

guistic expertise, etc., the results presented above suggest that lexical features offer by

far the highest cost-benefit ‘bang for your buck.’ Relying on lexical information alone in

most instances will result in a system within a few percentage points of theoretical max-

imum predictive accuracy, the types of lexical features used above are relatively cheap

and simple to extract with off-the-shelf, well-known programming tools, and extraction

requires only a modicum of linguistic or software-specific know-how. Extraction of pho-

netic and acoustic features on the other hand require more involved linguistic expertise,

and typically require the use of more specialized software tools such as Praat, vowel

extraction and forced alignment software suites, and so on. In addition to these points,

compiling and maintaining a corpus of auditory speech data is typically more work-

intensive and takes up more storage space than compiling and maintaining a corpus of

textual data, and any pre-existing corpora of language data that most non-academic

institutional entities may want to take advantage of for training purposes are more

likely to be in textual rather than auditory format.

One caveat to relying solely on lexical features however is the potential pitfall of

covert over-fitting with respect to lexical items in a specific corpus. Lexical features

in general are likely to be more vulnerable to domain change, topic variation, and so

on than acoustic or phonetic features. In order to deploy a real-world system heavily

reliant on lexical features which is broadly applicable, one should attempt to mitigate

the possibility of covert over-fitting by using training data from a corpus that is better

balanced across topics and text types than that used in this dissertation.
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Chapter 8: Discussion

Having now presented the results of both the MTL and STL experiments and examined

the relative importance of feature-type for each architecture, we can begin to draw some

conclusions about the relative benefits and detriments of MTL vs. STL architecture.

8.1 Overall Performance

The first thing to note is that the performance of both the STL and the MTL models

presented in this dissertation is quite good in comparison to similar existing work. The

closest comparison to the experiments performed in this dissertation that I’m aware of

in the existing automated speaker profiling literature is Gillick (2010). Using a simi-

lar subset of the same corpus relied upon in this dissertation– the 2008 NIST Speaker

Recognition Evaluation data set– Gillick trained Margin Infused Relaxed Algorithm

(MIRA) classifiers to predict sociodemographic speaker information along the same five

demographic axes focused on in this dissertation: sex, ethnicity, age, region, and ed-

ucation. In all cases other than age, the classification schemas used by Gillick were

identical to those used in this dissertation. For age, Gillick used a four-way bucketing

schema (20-29, 30-39, 40-49, 50+) whereas this dissertation used a slightly more fine-

grained five-way bucketing schema (18-25, 26-35, 36-45, 46-55, 56+). For each sociode-

mographic trait, Gillick used as features a binary representation (presence/absence) of

the top 2000 bigrams according to information gain. This is very similar to the lexical
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features used in this dissertation, though rather than solely bigrams, the lexical features

in this dissertation are a selection of the top 2000 ngrams from the set of both bigrams

and unigrams.

The main differences between the experiments performed in Gillick (2010) and

those performed here are as follows:

• Gillick (2010) relies solely on lexical features, whereas the models presented in
chapters 5 and 6 rely on lexical, phonetic, and acoustic features.

• Gillick (2010) employs MIRA classifiers to perform sociodemographic trait pre-
diction, whereas this dissertation uses various forms of Multi-Layer Perceptron
Neural Networks.

• Gillick (2010) does not report any sort of feature preprocessing, whereas this dis-
sertation applies various preprocessing steps to the raw features such as reduction
of highly correlated feature clusters, Yeo-Johnson power transformation, etc. as
described in chapter 5.

Table 8.1 compares the accuracy rates for the MIRA classifier for each trait re-

ported by Gillick (2010) to accuracy rates1 for the STL and MTL models presented in

chapters 5 and 6 of this dissertation.

Table 8.1: Predictive accuracy for Gillick (2010) and the
STL and MTL models

Trait Gillick 2010 STL MTL
Sex 82% 97.3% 98.1%
Ethnicity 72% 87.3% 87.8%
Age 65% 75.9% 76.9%
Region 60% 83.0% 82.9%
Education 67% 79.4% 80.2%

In all cases, the STL and MLP models reported in this dissertation perform be-

tween 10-20% better than the models reported by Gillick (2010). The lowest disparity

between the models presented here and those presented by Gillick is for age, but again
1Accuracy is used for comparison here rather than a form of F1 as this is the only evaluation metric

reported by Gillick (2010).
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recall that the classification schema used in this dissertation treats age as a five-way

classification problem whereas Gillick treat age as a four-way classification problem.

The improved classification accuracy for the STL and MTL MLP models over

Gillick’s MIRA models may be due to a number of factors. Perhaps the most obvious

is the additional phonetic and acoustic features included in the STL and MTL MLP

models. The inclusion of acoustic and phonetic features likely is responsible for some

portion of the increased predictive accuracy of the MLP models– particularly in the

case of sex– however the low importance of phonetic and acoustic features for predic-

tion of most of the sociodemographic traits examined here make it unlikely that these

additional features are the main driving force behind the disparity. Another possible

factor is the implementation of the lexical features included in the models. The STL

and MTL MLP models presented in this dissertation use a combination of unigram and

bigram features rather than solely unigram or solely bigram features precisely because

preliminary experimentation suggested that such a combination provided slightly bet-

ter results (on the order of 1-5 percentage points) than using purely unigrams or purely

bigrams. However, as with the additional acoustic and phonetic features, this seems

unlikely to be the main factor responsible for the disparity. It seems likely that the

driving force behind the substantial gains in predictive accuracy of the MLP models

over the MIRA models is predominantly a function of model type. Though admittedly

more computationally intensive, Multi-Layer Perceptron models may simply be better

suited to this type of task than MIRA models.

8.2 Multi-Task vs. Single-Task Learning

As described in chapter 6, evaluation metrics for the STL and MTL models are quite

close for all sociodemographic traits examined, but the MTL models generally edge out
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the STL models for most evaluation metrics for most traits by about a percentage point

or so. There appears to be a slight tendency for MTL models to outperform STL models

particularly in identification of well-represented (majority) classes, though there also

appears to be a very slight tendency to under-perform STL models on identification of

the most extreme under-represented classes.

Despite the MTL models generally outperforming the STL models, the difference

in terms of evaluation metrics between these two types of architectures was not nearly

as large as expected. A host of research detailed in chapter 2 suggests that MTL

frameworks tend to out-perform STL frameworks somewhat substantially when applied

to highly related tasks, yet this does not appear to be the case for the models reported

in this dissertation. It’s important to dig into why this might have been.

One clue as to the underlying factor for the relative similarity between the STL

and MTL models reported here may lie in the feature importance results detailed in

chapter 7. It became clear in chapter 7 that, though a few individual phonetic or acous-

tic traits might be highly important to prediction depending on the sociodemographic

trait of focus, lexical features as a group were by far the most important feature block,

contributing as much as 78% of the error reduction rates depending on the trait of

focus. Recall also that the lexical features used in models targeted at predicting each

individual trait were engineered so as to have specific importance to that particular

trait. That is to say, the lexical features used in the ethnicity predicting models were

selected specifically so as to be useful in distinguishing between ethnicities, the lex-

ical features used in the age-predicting models were selected so as to have maximal

relevance to distinguishing between age categories, and so on. The choice was made

to include only ngram features that were relevant to the target trait because results

from initial experiments including all lexical features for all traits were particularly

poor and quite close to naive baseline levels– likely due to the high dimensionality of
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the resulting feature vector.2 For the MTL models, that meant that, though those

models were attempting to learn representations for sex, age, ethnicity, region, and

education simultaneously, they only received lexical features that were guaranteed to

be relevant to one of those five traits during training. In light of the importance of lex-

ical features to sociodemographic trait prediction, it is reasonable to hypothesize that,

lacking lexical features relevant for predicting the four non-target traits, those output

layers that were dedicated to predicting the non-target traits were unable to establish

a strong enough representation of their particular assigned sociodemographic trait so

as to impact model performance any more than a moderate few tenths of a percent.

In other words, the network-regularization benefits of the MTL architecture may have

been mostly nullified by the failure to deliver relevant lexical feature information to the

non-target sociodemographic heads of the network.

In light of this possibility, two additional experiments were performed that ex-

tended the MTL design detailed in chapter 6 in order to address this potential issue.

Both experiments modified the network design in order to provide those sections of the

MTL network dealing specifically with non-target sociodemographic traits with lexical

information relevant to those traits.

8.3 Multi-Task Learning Extension Experiments

8.3.1 Dense embeddings as lexical features

In this experiment, the trait-specific binary ngram features used in the initial MTL

experiment were replaced with trait-agnostic, segment-specific dense embeddings. Two
2After eliminating duplicates and removing highly correlated clusters, including the top ngrams for

each of the 5 traits results in a feature vector with roughly 7,000 dimensions. Including only those
ngrams relevant to the target trait however results in a feature vector of roughly 2,200 dimensions.
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different methods for obtaining dense embeddings from each speech segment were ex-

plored: 1) using a version of Google’s pre-trained Universal Sentence Encoder (Cer

et al., 2018), and 2) using a standard Doc2Vec model trained on the corpus as a whole.

The idea behind this experiment was that, by delivering a dense embedding repre-

sentation of the words used in a given speech segment, one could avoid the problem of

high dimensionality in the feature vector while still providing a reasonably full picture

of the lexical items used in a speech segment to the network. The sections of the MTL

network specifically focused on individual sociodemographic trait prediction could then

learn to attend to those dimensions of the embedding vector that were relevant to those

specific traits, thereby gaining the relevant, trait-specific lexical information that had

been previously only available for the target sociodemographic trait.

Table 8.2 presents the macro F1 scores for the MTL models trained to predict

each sociodemographic trait of focus using both Universal Sentence Encoder-derived

embeddings and Doc2Vec-derived embeddings and compares them to the macro F1

scores for the initial binary ngram MTL models trained to predict those same traits as

reported in chapter 6. Hyper parameters were re-tuned for each of the new approaches

using the same methodology as was used for the original binary ngram MTL models

prior to final model training. As with the ngram MTL models, results presented in

table 8.2 below represent the average macro F1 score over five separate training runs.

Table 8.2: Evaluaton metrics for ngram, Doc2Vec, and
USE MTL models

trait Ngram_F1 Doc2Vec_F1 USE_F1
sex 0.980 0.951 0.959
eth 0.785 0.419 0.403
age 0.758 0.345 0.367
reg 0.818 0.363 0.412
edu 0.758 0.420 0.355
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In all cases, the F1 scores for models using dense embeddings were worse than

those for models using specifically selected ngram features. For all traits except sex,

the embedding models were much, much worse. The relatively minimal impact of

embedding vs. ngram features for sex is likely related to the lower reliance on lexical

features for models predicting sex in general.

It appears that for MTL models performing this type of task, it is indeed best

to rely on ngram features specifically selected to be relevant to the target trait, de-

spite these features potentially having little relevance to the non-target traits. The

poor performance of the embedding models may stem from the nature of the embed-

dings themselves. Dense embeddings necessarily reduce the distinction between seman-

tically similar lexical items, and in some cases subtle differences between what may

be otherwise semantically similar items can be crucial to distinguishing between so-

ciodemographic categories. For instance, the lexical items “husband” and “wife” are

semantically identical in most respects other than gender, and the use of one or the

other is unlikely to make much difference to a dense embedding representing the speech

segment in which it occurs. However, when looking at usage patterns of these two lex-

emes in the corpus, it is a near certainty that if a speaker uses the word “husband” that

speaker is a female, and vice versa. Likewise the terms “husband” and “boyfriend” are

semantically similar in most respects, yet use of the former is far more likely to indicate

a speaker from one of the older age groups than one of the younger age groups. As a

final example, dense embeddings are unlikely to distinguish much between individual

toponyms, yet mentions of “bay area,” for instance, typically indicate a speaker from

the Western region, toponyms belonging to the northeast typically denote northeastern

speakers, and so on.
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8.3.2 Trait-specific lexical feature delivery

The second of the MTL extension experiments attempted to address the lack of relevant

lexical information available to the non-target sections of the MTL models by moving

delivery of the lexical features out of the shared layer and into the trait-specific layers.

Acoustic and phonetic features were delivered to the shared hidden layer as before.

For each trait, the output of the shared hidden layer was then concatenated with a

vector representing the presence or absence of the ngrams relevant to that particular

trait, and then passed on to the hidden layer that dealt specifically with that particular

trait. In other words, all sections of the MTL network received the same phonetic

and acoustic information, but each trait-specific section of the network only received

lexical information relevant to that particular trait. Tables 8.3 through 8.7 compare

the evaluation metrics of the initial “vanilla” ngram MTL models with those using this

trait-specific ngram delivery design for each trait.

Table 8.3: Comparison of vanilla and trait-specific MTL
models for sex

condition f1_macro f1_weighted acc
vanilla 0.980 0.981 0.981
t-spec 0.966 0.967 0.967

Table 8.4: Comparison of vanilla and trait-specific MTL
models for ethnicity

condition f1_macro f1_weighted acc
vanilla 0.785 0.884 0.878
t-spec 0.821 0.893 0.891
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Table 8.5: Comparison of vanilla and trait-specific MTL
models for age

condition f1_macro f1_weighted acc
vanilla 0.758 0.771 0.769
t-spec 0.750 0.764 0.763

Table 8.6: Comparison of vanilla and trait-specific MTL
models for region

condition f1_macro f1_weighted acc
vanilla 0.818 0.830 0.829
t-spec 0.819 0.825 0.825

Table 8.7: Comparison of vanilla and trait-specific MTL
models for education

condition f1_macro f1_weighted acc
vanilla 0.758 0.800 0.802
t-spec 0.841 0.861 0.862

For sex, age, and region, the trait-specific ngram delivery design either had min-

imal impact or performed worse than the vanilla ngram delivery design. For ethnicity

and education however, macro F1 scores improved somewhat dramatically. In the case

of education, macro F1 score improved by over 8 points, along with a corresponding

6 point improvement for weighted F1 and and overall accuracy. That the gains for

these two traits are larger in macro F1 than the other evaluation metrics suggests that

the trait-specific ngram delivery design was of particular help in identifying speakers

belonging to minority classes. Figures 8.1 and 8.2 present normalized confusion matri-

ces averaged over the five training runs for the trait-specific ngram delivery models for

ethnicity and education, respectively.
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Figure 8.1: Confusion matrix for trait-specific MTL Ethnicity models

The confusion matrices in figures 8.1 and 8.2 confirm that the major areas of im-

provement for the trait-specific ngram delivery design for these two features were indeed

in identification of minority class speakers, at the slight expense of predictive accuracy

for the majority class speakers. For ethnicity, the major difference is the identification

accuracy of Hispanic speakers– jumping from 49.7% accuracy in the vanilla MTL models

to over 75% accuracy in the trait-specific ngram delivery models. Likewise identifica-

tion accuracy for “no college” and “post-college” speakers in the education models im-

proved from 68.5% and 72.3% to 80.9% and 81.7%, respectively. An examination of the

confusion matrices for the other three traits reveals a similar pattern wherein the most

under-represented classes for the respective sociodemographic trait generally experience

a slight boost in identification accuracy and the most over-represented classes generally

experience a slight decline in identification accuracy. Though not reported here for

reasons of space, examination of the non-target output layers of the MTL models also
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Figure 8.2: Confusion matrix for trait-specific MTL Education models

show a (predictably) substantial increase in the predictive accuracy of the non-target so-

ciodemographic trait prediction for the trait-specific ngram delivery architecture across

the board. These pieces of evidence support the notion that the trait-specific ngram

delivery design increases the efficiency of the non-target MTL heads, thereby increasing

the effectiveness of the regularization effects of the MTL architecture on the model as a

whole and boosting performance in those situations where network regularization would

have the strongest effect– namely in curbing over-prediction of the majority class and

boosting identification of those sociodemographic classes which are the most severely

under-represented in the data and which present the most difficulty to vanilla STL and

MTL models.
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8.4 Conclusions (Research Question 3)

Given the findings in chapters 5, 6, and 7 and the discussion presented above in this

chapter, there are several main conclusions regarding the relative performance of STL

and MTL models that are worth outlining here in detail. These conclusions directly

address research question 3 as laid out in chapter 1: Can a multi-task learning ap-

proach provide significant gains in accuracy over a system in which each speaker trait

is predicted in isolation?

First, it is apparent from the comparison of the STL and vanilla MTL performance

metrics that the MTL architecture does indeed generally provide better performance

on sociodemographic trait prediction than the STL architecture, regardless of one’s

preferred evaluation metric. However, the increase in performance for the MTL models

for most traits is minimal (and in the case of region, nonexistent), and may not warrant

the increased complexity of the MTL architecture.

Second, though the inclusion of phonetic and acoustic features do provide an

increase in performance for most sociodemographic traits (particularly in predicting

speaker sex), lexical features as a group are by far the most important for obtaining

accurate results. In addition to their overwhelming importance in all of the models

addressed in this dissertation, lexical features are generally cheaper and easier to extract

than phonetic and acoustic features, and require less specific linguistic knowledge and

tools to do so.

Third, in terms of representing the lexical content of a speech segment, binary

(presence/absence) ngram features specifically selected to have relevance to the target

trait provide substantially better results than trait-agnostic embeddings. As discussed

above, this is likely due to the fact that embeddings by design reduce the distinction
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between semantically similar lexical items that, despite their overall semantic similarity,

may provide crucial clues to sociodemographic class identification.

Fourth, in terms of feature delivery, delivering all binary ngram features that have

relevance to all traits predicted in the output layers of an MTL model together in the

initial shared layer of an MTL model results in prediction performance close to naive

baseline. This is likely due to the high dimensionality of the resulting feature vector.

Presenting just those ngram features which have relevance to the target trait in the

initial shared layer of an MTL model results in overall excellent prediction performance,

edging out STL models using the same features and training data, and outstripping

the most similar work in the automated speaker profiling literature (Gillick, 2010) by

roughly 16 percentage points in terms of overall predictive accuracy on average. Moving

delivery of ngram features from the shared section of the network to the trait-specific

sections of the network and providing each output layer with ngram features designed

for their respective sociodemographic traits results in even higher overall accuracy for

some sociodemographic traits (particularly for education, which receives a 6% increase

in overall accuracy), and generally boosts model performance in terms of identification

accuracy of minority classes.

The above conclusions lead to the following actionable recommendations for those

considering the use of Multi-Task Neural Networks in predicting sociodemographic

speaker traits.

First, if feasible, one should attempt to include features from the phonetic, acous-

tic, and lexical realms in systems designed to predict sociodemographic speaker traits.

If however working on a project with time/resource constraints, one should focus on the

extraction of target-trait-relevant binary ngram features, as these provide the highest

cost/benefit ratio.

235



Second, MTL models are trickier to design, have more hyper-parameters to op-

timize, take longer to train, and are more computationally intensive than their STL

counterparts. If the goal of a project is to obtain the absolute best predictive perfor-

mance possible, an MTL framework should be used over an STL framework. However,

If a percentage point here or there isn’t crucial and/or resources are limited, STL frame-

works are probably adequate for most tasks. The exception to this is in the prediction

of education. The trait-specific ngram delivery flavor of the MTL architecture resulted

in a net 6.8% increase in predictive accuracy over the corresponding STL model. Such

an increase may warrant the increased complexity, training time, etc. that is inherent

in the MTL architecture.
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Chapter 9: Contributions, Limitations, and Future Work

This chapter provides an overview of the contributions this dissertation has made to

the field of automated speaker profiling as well as some limitations of the present work

and potential future avenues of exploration.

9.1 Contributions

As far as I’m aware, this dissertation represents the first attempt to apply multi-task

learning to automated speaker profiling tasks. Given the wealth of evidence from other

fields for the power of multi-task learning on related classification tasks, this exploration

has been long overdue. A summary of the classification accuracy and macro F1 scores

for all models trained on all tasks is presented in tables 9.1 and 9.2, respectively. The

best performance scores for each trait are bolded.

Table 9.1: Summary of classification accuracy for all STL
and MTL models

model type sex eth age reg edu
STL 0.973 0.873 0.759 0.83 0.794
MTL (vanilla) 0.981 0.878 0.769 0.829 0.802
MTL (Doc2Vec) 0.952 0.632 0.409 0.422 0.518
MTL (USE) 0.959 0.649 0.403 0.458 0.455
MTL (t-spec) 0.967 0.891 0.763 0.825 0.862
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Table 9.2: Summary of macro F1 scores for all STL and
MTL models

model type sex eth age reg edu
STL 0.973 0.79 0.743 0.82 0.752
MTL (vanilla) 0.98 0.785 0.758 0.818 0.758
MTL (Doc2Vec) 0.951 0.419 0.345 0.363 0.42
MTL (USE) 0.959 0.403 0.367 0.412 0.355
MTL (t-spec) 0.966 0.821 0.75 0.819 0.841

The results presented in chapters 5 through 8 and summarized in tables 9.1 and

9.2 demonstrate that multi-task models outperform single task models regardless of

evaluation metric on speaker classification along four of the five social traits examined

(sex, ethnicity, age, education). This finding leads to the actionable recommendation

detailed in chapter 8 that those wishing to deploy automated speaker profiling systems

in real world contexts where classification accuracy is paramount would be well served

by adopting the type of multi-task model design detailed here. However, the compari-

son between the multi-task models and single-task models also makes clear that while

multi-task models consistently outperform single task models, the improvement in clas-

sification accuracy for most traits is somewhat minimal from a practical standpoint.

The best performing MTL models outperformed the STL models in classification accu-

racy by roughly 2% on average. Though this improved performance of MTL over the

STL model design is important from a theoretical perspective, the magnitude of said

improvement may not be worth the added design complexity depending on one’s use

case. As discussed in chapter 8, single-task systems should be sufficient for those de-

ploying automated speaker profiling systems in contexts where time, resources, and/or

expertise are limited.

Beyond the comparison of single-task and multi-task frameworks, a further contri-

bution of this dissertation to the field of ASP is that, so far as I’m aware, the classifica-
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tion accuracy of the best performing MTL models presented in chapter 8 represent the

highest performance on speaker education and speaker ethnicity prediction that have

been achieved on conversational speech to date. Ethnicity and education are partic-

ularly under-examined traits within the field of automated speaker profiling, perhaps

due to task difficulty, yet this dissertation has demonstrated that the type of MTL

models detailed here are capable of classifying speakers with regard to these traits with

accuracy rates in the mid to high 80% range (86.2% for education, 89.1% for ethnicity).

The closest performing models I’m aware of detailed in the ASP literature come from

Gillick (2010), with accuracy rates of 67% for education and 72% for ethnicity. This

represents a major improvement in performance on these tasks, and should serve as a

jumping off point for future ASP work concerned with these traits.

Performance metrics of the MTL models on speaker sex classification are also some

of the best figures reported for spoken data, within 0.5% of the maximum classification

accuracy reported in the ASP literature. Recall that the highest performance on sex

classification using spoken data to date come from Hu et al. (2012), who reported 98.65%

accuracy rates in a binary sex prediction task. However, the data-set used in this study

consisted of extremely high quality laboratory recordings of speakers producing 77 digit

sequences. The MTL models detailed in chapter 6 achieved an accuracy rate of 98.1%

on conversational telephone data– a rather remarkable result given the medium. As far

as I’m aware, this represents the highest performance achieved thus far on speaker sex

classification using conversational, non-laboratory speech data.

In addition to the extremely high performance of the MTL models presented here,

one of the prime contributions of this dissertation to the field of ASP are the findings

related to the importance of different feature types. As discussed in chapters 1 and 2,

the majority of automated systems attempting to profile speakers using spoken data

tend to focus on phonetic and acoustic features. The analysis presented in chapter 7
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however clearly shows that lexical features are the driving force behind the high perfor-

mance of the models reported here, responsible for up to 78% of the reduction in error

rates. While the high level of model reliance on lexical features relative to phonetic and

acoustic features may be somewhat surprising to sociophoneticians and those working

in traditional automated speaker profiling, a great deal of computational corpus work

over the years has demonstrated the power of lexical predictors for distinguishing be-

tween various social trait categories. Boulis and Ostendorf (2005) for example achieved a

classification accuracy rate of 92% on a binary sex classification task performed on tran-

scripts of conversational telephone speech data using presence/absence lexical features

similar to the informative ngram features used here. Rao et al. (2010) demonstrated

that Twitter users may be classified with a high level of accuracy according to gen-

der (male/female, 72% accuracy), age (above/below 30, 74% accuracy), regional origin

(north/south India, 77% accuracy), and political orientation (Democrat/Republican,

83% accuracy) using a combination of lexical and orthographic features. Nguyen et al.

(2013) have even demonstrated that reasonable accuracy (micro F1 scores between 0.85-

0.87) can be achieved in classifying Twitter users by age-group and life-stage based on

unigram lexical information alone. It is safe to say that the power of lexical features on

speaker/author classification tasks is well known in the corpus-based computational lit-

erature. The present work demonstrates that this finding carries over into automated

speaker profiling, and should motivate researchers working in the field of automated

speaker profiling moving forward to broaden the scope of higher-level features consid-

ered and increase the level of attention paid to potential lexical predictors, regardless

of the social trait(s) of focus.

Beyond model design and implementation ramifications, this dissertation also im-

plicitly presents an interesting methodological point that future research in ASP should

take note of. One of the major difficulties in performing speaker classification tasks us-

ing spoken data is the relative paucity of (conversational) spoken data corpora available
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for model training. This fact is likely primarily responsible for the relatively scant au-

tomated profiling work done on spoken as compared to textual data, and may also be

responsible for the general trend in automated speaker profiling work (as compared to

automated author profiling work) to use model types that require fewer data points for

effective training than the types of neural network models used here. This dissertation

addresses this point by performing a randomized speech segment chunking procedure

that artificially boosts the number of data points ten-fold. The high performance of the

models presented in preceding chapters speaks to the fact that this chunking procedure

had little to no detrimental effects on speaker classification, and can be an effective

strategy for increasing the number of data points available for model training.

Relatedly, the performance metrics of the models presented here speak to the fact

that the 60 second speech segments extracted from the original five-minute conversa-

tional recordings contain sufficient linguistic information to achieve high classification

accuracy in prediction tasks examining all five of the social traits investigated in the

preceding chapters. Though longer speech segments (and thus more linguistic infor-

mation) would likely increase performance somewhat, it appears that 60 seconds of

conversational speech is sufficient to achieve quite high classification accuracy on the

profiling tasks undertaken in this dissertation.

9.2 Limitations

Prior to addressing the potential future avenues of exploration that this dissertation

points to, it is important to point out several limitations that may have impacted the

present work.

First, it’s important to note that though the models presented here achieve par-

ticularly good results on the NIST SRE data, the generalizability of these models to
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other corpora and other genres is unknown at this time. As pointed out in chapter 7,

the high importance some of the models place on individual content lexemes which are

seemingly unrelated to the task at hand may be an indicator that these models have

covertly over-fit the corpus used for training and testing (that is to say, though the

models do not appear to unduly rely on idiosyncrasies of the training versus the test

sets, they may be reliant on certain idiosyncrasies present in the NIST SRE data set as

a whole). If this is indeed the case, this coupled with the high model reliance on lexical

features makes it questionable that the models presented here would generalize well to

conversational corpora from different time periods, non-conversational spoken corpora,

or conversational corpora including different conversational topics than those present in

the NIST SRE data-set. That said, out-of-domain performance degradation is typical

in any sort of machine learning situation, and the network design presented in the pre-

ceding chapters does include regularization strategies such as drop-out and batch-norm

(as well as the added regularization effects of the MTL design itself) to mitigate this

somewhat. Furthermore, while the models themselves may not generalize well, I see no

reason why the model design, feature engineering, and training procedures used here

would not generalize well to other corpora. In other words, while it is questionable that

the specific models trained here would perform as well on test data from other corpora,

models trained on any particular conversational corpus using the same methodology as

laid out in this dissertation would likely perform similarly well on test data from that

same corpus.

It should also be noted that the relatively low importance assigned to phonetic

and acoustic feature types by the models presented here may simply be a result of

not including important phonetic and acoustic features. Several features potentially

important to speaker classification were discussed in chapter 2 that were not included

as features in the models presented above due to time constraints. It is likely that

inclusion of such features (e.g. contextually specific representations of certain vowels
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such as pre-nasal /æ/, information related to consonants such as voice onset time of

certain stop phonemes, specific alternations mentioned in the sociolinguistic literature

such as IN/ING variation, and so on) would boost both overall performance as well as

acoustic/phonetic feature type importance.

A further limitation of the present work stems from the nature of the feed-forward

neural network models used. Such models necessitate treating each speech segment as

a “bag of features,” and thus necessitate operationalizing most features as an average

taken over the entire duration of the speech segment. As such, these models are not

able to take into account any sort of potentially useful temporally or contextually

dependent phenomena. If for instance a particular pronunciation of a particular word

is diagnostic of a certain demographic category (yet this particular pronunciation is

not indicative of a systematic peculiarity of the phonetic system of these individuals

at large), this is information unable to be captured in the current methodology since

all phonetic, acoustic, and lexical features extracted are the result of averaging all

examples encountered throughout the course of the speech segment. In short, the

current methodology does not allow for providing the models with feature conjunction

information of the type “acoustic/phonetic phenomenon X was encountered during

productions of lexeme Y throughout this speech segment.”1

Finally, it may be important to consider the fact that the type of permutation

feature importance testing performed in chapter 7 does not necessarily convey the

same information that would be gained via ablation testing. As such, while we can

measure reductions in error rates depending on the particular features and feature

groups that are permuted, we can’t necessarily draw conclusions regarding how a given
1For example, producing a place name, food term, etc. associated with Hispanic culture in such a

way as to be consistent with the phonetic inventory of Spanish rather than the typical Americanized
pronunciation is likely highly indicative of Hispanic ethnicity. Encountering such a pronunciation
would likely be a “knock-out” feature for most human listeners, leading them to conclude that the
unknown speaker identifies as Hispanic, whereas a system examining the average phonetic landscape
over the entire speech segment would likely miss such a momentary shift.
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model would perform in the absolute absence of these particular features/feature groups.

Relatedly, it’s possible that the high importance placed on the lexical feature group for

all models examined was driven not necessarily by a high degree of information conveyed

by these features, but rather by the high degree of noise conveyed by permutation of

these features. In other words, it’s possible that the extreme performance degradation

observed for models receiving randomly permuted lexical features may not be due to a

loss of informational signal, but rather due to the introduction of approximately 2,000

features containing nothing but random noise. It’s therefore possible that a model

trained and tested on solely phonetic and acoustic information would perform better

than a model trained on phonetic, acoustic, and lexical information and tested with

phonetic, acoustic, and permuted lexical information. Beyond these points, the nature

of individual feature permutation testing means that clusters of important yet somewhat

mutually redundant features will be underestimated in terms of their individual feature

importance, as discussed in chapter 7.

9.3 Future Work

This dissertation points to a number of interesting avenues for future exploration.

First, though this dissertation employed speech segments of roughly 60 seconds

as the atomic unit of analysis, this chunk length was somewhat arbitrarily chosen. It

would be an interesting and worthwhile endeavor to experiment with chunk length to

divine the smallest length of speech segment necessary to perform these profiling tasks

without substantial performance degradation. The smaller a chunk one needs to rely

on for these sorts of tasks, the more data points one can mine from corpora containing

longer conversational segments and the more use cases such a system could be applied

to. It may also be beneficial to explore the use of chunk size as a hyper-parameter
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co-dependent on the corpus used and task priorities in order to find the optimal chunk

size for a given data-set and classification problem.

Continuing in the methodological vein, though this dissertation trained neural

networks using a feed-forward network design, it would be interesting to extend the

multi-task methodology presented here for use with recurrent neural network designs.

Such recurrent networks would not necessarily need to rely on specific speech segment

chunk lengths, which could potentially widen the range of use cases to which these mod-

els may be applied. Such networks would also be able to take into account information

related to the sequential order of features encountered within a given speech segment

rather than treating each speech segment as essentially a bag-of-features.

One particularly important and potentially useful avenue of future research would

be to explore broader, more general methods of representing lexical information to the

predictive models than the informative ngram approach used here. Informative ngram

features were found to be highly predictive of social category distinctions both here and

in Gillick (2010), yet explicitly selecting particular ngrams relevant to particular social

traits is somewhat inelegant and must be done anew for each novel trait that this sort of

system is applied to. The dense embedding extension experiments discussed in chapter

8 were designed specifically to provide a broader and more trait-agnostic representation

of lexical features to the MTL models, though results for these MTL models were

quite a bit lower than for the MTL models using informative ngram features. One

possibility not explored here is representing the lexical choices made by speakers via

character-based language models. Such an approach would have the added benefit of

directly modeling morphological phenomena, which though potentially predictive was

not examined in any way in the current work. The ability to represent morphological

as well as lexical information within the predictive models may be of particular use in

predicting traits such as level of education.
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Extensibility of the current methodology to multi-lingual settings could also be an

interesting direction of future research. The acoustic features included in the method-

ology presented here should be largely language-agnostic. Phonetic and lexical features

would of course need to be tailored to the phonetic and lexical inventory of whichever

new language(s) this methodology would be extended to work with, yet I see no particu-

lar reason why the basic underlying concepts of measuring vowel point representations,

vowel space diagnostics, and extracting representations of informative ngrams would

not be of use in non-English ASP settings.

One relatively minor methodological point that may bear further examination is

the manner in which phonetic representations are obtained. As noted in chapter 3, this

dissertation employed a forced aligner to automatically segment the sound files at both

the lexical and phonetic levels. Forced aligners such as that used here are reliant on

both a transcript and an underlying pronunciation lexicon, both of which may be prone

to errors. Erroneous phonetic transcriptions resulting from incomplete pronunciation

profiles in the lexicon and inaccuracies in the transcript may be reduced by relying on

a phonetic recognition system2 to extract phonetic representations, thus making such

representations lexicon and transcript agnostic.

Something else to look into is whether or not there is a difference in generalizability

of the STL vs. the MTL models. The added regularization effects and auxiliary shared

features of the MTL network design could very well make MTL speaker profiling systems

more robust to domain and genre changes than systems using an STL design, which

would be another point in favor of MTL in situations where broad applicability of

speaker profiling systems is desired. This is an open question, and one that is ripe for

future investigation.
2See e.g. Alsharhan and Ramsay (2019) for a recent example of such a continuous phonetic recog-

nition/transcription tool.
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Another potentially worthwhile experiment would be to examine the robustness

of the current methodology to malicious signal manipulation aimed at deception. The

high reliance on lexical features3 of the models presented above would seem to make it

likely that such models would be relatively robust to the types of acoustic and phonetic

manipulation commonly employed for disguising one’s speech, which could be poten-

tially useful in law enforcement contexts (e.g. narrowing down the pool of suspects for

an individual making a bomb threat).

One particularly interesting area for exploration may be the disconnect between

what the models presented here find important (i.e. the high importance placed on

lexical features) and what human listeners tend to find important when asked to classify

unknown individuals along sociodemographic axes using spoken data. Purnell et al.

(1999) for instance find that human listeners are able to correctly identify speaker

ethnicity solely based on hearing a recording of a single word (“hello”) more than

70% of the time. Clearly in this case listeners are not attending to lexical cues, but

rather phonetic and/or acoustic cues. In comparison, the vanilla MTL models trained

to predict ethnicity dropped from roughly 88% classification accuracy to roughly 30%

classification accuracy when presented with permuted lexical data (i.e. presented with

data containing reliable information solely for the phonetic and acoustic features). It

therefore seems likely that human listeners are able to pick up subtle phonetic, acoustic,

and potentially paralinguistic cues that are not included in the feature sets used here.

Again, this suggests that it may be fruitful to explore the types of features which

are known within the sociolinguistic literature to vary in socially meaningful ways yet

which were not included in the present analysis. Of particular interest would be an
3While speakers deliberately attempting to disguise their speech may add, avoid, or vary certain

high-saliency lexical items associated with particular social groups (e.g. the northern California inten-
sifier “hella”, slang words stereotypically associated with AAE or CE, etc.), most of the lexical cues on
which these models rely are likely below the level of consciousness and not subject to intentional ma-
nipulation, such as the frequency and distribution of certain discourse markers, pause fillers, pronoun
distributions, etc.
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examination of certain paralinguistic cues related to prosody and stress patterning

which are known to pattern socially,4 as I am unaware of any work in automated

speaker profiling so far which takes such cues into account.

In this same vein, it was argued in chapter 2 that the simultaneous nature of trait

prediction and the presence of jointly developed features in the shared layer of the multi-

task models brings this flavor of automated speaker profiling more into line with how

humans likely perform the task of profiling unseen speakers than has been the case for

previous, single-task approaches to ASP. However, it may be worth considering the fact

that while the MTL models develop representations of all social traits jointly, this is not

necessarily the manner in which humans acquire the socio-indexical markers which are

used to distinguish between trait categories. Some work examining the acquisition of

sociolinguistic variation has hypothesized that, rather than developing representations

of all social traits/categories simultaneously, cognitive representations of social traits

(and thus representations of the sociolinguistic markers associated with these traits)

which are more transparent and/or frequently encountered may be developed earlier

in life than representations of those traits which are more complex or less frequently

encountered (Foulkes, 2010, pgs. 19-20). Under this hypothesis, socio-indexical markers

associated with “easier” category differentiation tasks like speaker sex would therefore

be acquired prior to markers associated with potentially more problematic social traits

such as ethnicity. Put in terms of computational modeling, this sounds quite similar

to work being done on transfer learning, in which models are first trained on one

task and then either cross-trained or used as inputs for subsequent models to perform

related yet (potentially) harder tasks. Such a transfer learning approach applied to

the training procedure of a multi-task model would therefore bring automated speaker

profiling even closer to the manner in which humans are hypothesized to perform speaker
4E.g. the marked phrase-final rise-and-sustain and rise-and-fall intonation pattern common to

Chicano English speakers as described by Fought (2003).
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profiling tasks, and may be worth investigating in future work on ASP.5 That said, the

regularization effects of such approaches are precisely what the addition of task-specific

output layer weights adjusted during hyper-parameter optimization are designed to

achieve in the MTL models presented here, and I’m somewhat skeptical that such a

design would outperform the current methodology significantly.

Finally, it could be worthwhile to dig a bit more into the difference or lack-thereof

between the STL and MTL models for the region prediction task. As tables 9.1 and

9.2 show, the best performing MTL models outperformed the STL models by at least

a small margin in all other trait prediction tasks, but the STL models and the best

performing MTL models performed essentially identically on the region prediction task.

One possible explanation for this may lie in the nature of the MTL models themselves.

As mentioned in chapter 2, MTL is expected to outperform STL only in cases where

the primary and secondary model tasks are relatively highly related. It may be the case

that while traits such as age, sex, ethnicity, etc. operate on a similar social identity

“plane,” region operates on a different social identity “plane,” and that consequently

the linguistic performance of regional identity is less affected by the other four traits

considered than was assumed here. In other words, perhaps the other four social traits

examined in this dissertation are simply not traits which tend to have a large impact

on the linguistic features that the regional prediction task relies on, and consequently

the regional prediction task head of the MTL model was not overly involved in the

development of the kinds of jointly constructed features within the shared hidden layers

that multi-task learning is hypothesized to benefit from. Perhaps we would have seen

more of a difference between MTL and STL models aimed at predicting region if we

were to include as secondary tasks other social traits that operate on a more similar
5Though note that designing ASP systems such that they approximate human behavior simply for

the sake of approximating human behavior is irrelevant to the goals of ASP. Human-like implemen-
tations should be explored and adopted only insofar as they improve or are hypothesized to improve
model performance.
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identity “plane” to that of region. Possibilities for this might include secondary tasks for

predicting urban vs. rural speakers, a speaker’s political orientation, and so on. Further

exploration of secondary prediction tasks more closely related to regional origin may

prove fruitful for those attempting to model region in a multi-task automated speaker

profiling context.

A second possible explanation for the similar performance of the STL and MTL

models for region may be that one or more of the other four included social trait predic-

tion tasks acted as a confounding influence on the regional prediction task in the MTL

models, and that if one were to remove the offending secondary task(s), one would see

an increase in performance for the MTL vs. the STL models. If this were the case, one

might also expect that region in turn could have acted as a confounding task for one or

more of the other social traits examined during the course of this dissertation, and that

removing it would increase performance of the MTL model(s) aimed at predicting those

tasks. Ablation experiments in which the MTL models are trained with all possible com-

binations of the five traits examined would help to clarify whether or not this was in

fact the case, and may have the added benefit of elucidating which secondary tasks

are most beneficial to which primary tasks– a direction of investigation not explored

here, but one which could have practical implications for the deployment of automated

speaker profiling systems taking advantage of a multi-task learning framework.
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Appendix A: Sinlge-Task Learning Baseline Model Specs

All baseline models were trained using using the functional API of Keras 2.2.4 with a

TensorFlow (GPU) 1.13.1 back-end. The TPE algorithm from Hyperopt 0.1.2 was used

to perform the hyper parameter search. All training took place using Python 3.6.6.

Final tuned hyper parameters are presented in tables A.1 through A.5 for each baseline

model below. All unreported parameters were left set to default values.
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Table A.1: Tuned hyper parameters for final sex STL models

Parameter Value
epochs 80
batch size 128
dropout rate 0.44
kernel initialization glorot_normal
optimizer rmsprop
hidden Layer 1 size 270
hidden layer 2 size 471

Table A.2: Tuned hyper parameters for final ethnicity STL models

Parameter Value
epochs 38
batch size 32
dropout rate 0.82
kernel initialization he_normal
optimizer adam
hidden Layer 1 size 453
hidden layer 2 size 289

Table A.3: Tuned hyper parameters for final age STL models

Parameter Value
epochs 49
batch size 128
dropout rate 0.61
kernel initialization he_uniform
optimizer adam
hidden Layer 1 size 259
hidden layer 2 size 274
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Table A.4: Tuned hyper parameters for final region STL models

Parameter Value
epochs 20
batch size 128
dropout rate 0.71
kernel initialization glorot_normal
optimizer adam
hidden Layer 1 size 323
hidden layer 2 size 577

Table A.5: Tuned hyper parameters for final education STL models

Parameter Value
epochs 70
batch size 128
dropout rate 0.85
kernel initialization he_uniform
optimizer adam
hidden Layer 1 size 612
hidden layer 2 size 173
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Appendix B: Multi-Task Learning Model Specs

All MTL models were trained using using the functional API of Keras 2.2.4 with a

TensorFlow (GPU) 1.13.1 back-end. The TPE algorithm from Hyperopt 0.1.2 was used

to perform the hyper parameter search. All training took place using Python 3.6.6.

Final tuned hyper parameters are presented in tables B.1 through B.5 for each baseline

model below. All unreported parameters were left set to default values.

254



Table B.1: Tuned hyper parameters for final sex MTL models

parameter value
epochs 52
batch_size 128
drop_rate 0.14
init_mode glorot_normal
optimizer adam
shared_neurons 21
age_specific_neurons 121
edu_specific_neurons 463
eth_specific_neurons 361
reg_specific_neurons 216
sex_specific_neurons 188
age_weight 0.89
edu_weight 0.61
eth_weight 0.55
reg_weight 0.61
sex_weight 1

Table B.2: Tuned hyper parameters for final ethnicity MTL models

parameter value
epochs 26
batch_size 128
drop_rate 0.78
init_mode glorot_normal
optimizer adam
shared_neurons 632
age_specific_neurons 426
edu_specific_neurons 298
eth_specific_neurons 103
reg_specific_neurons 442
sex_specific_neurons 113
age_weight 0.24
edu_weight 0.47
eth_weight 1
reg_weight 0.36
sex_weight 0.98
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Table B.3: Tuned hyper parameters for final age MTL models

parameter value
epochs 24
batch_size 128
drop_rate 0.79
init_mode he_uniform
optimizer adam
shared_neurons 454
age_specific_neurons 183
edu_specific_neurons 456
eth_specific_neurons 199
reg_specific_neurons 107
sex_specific_neurons 107
age_weight 1
edu_weight 0.44
eth_weight 0.28
reg_weight 0.12
sex_weight 0.8

Table B.4: Tuned hyper parameters for final region MTL models

parameter value
epochs 24
batch_size 128
drop_rate 0.76
init_mode he_normal
optimizer adam
shared_neurons 328
age_specific_neurons 415
edu_specific_neurons 95
eth_specific_neurons 110
reg_specific_neurons 184
sex_specific_neurons 154
age_weight 0.67
edu_weight 0.62
eth_weight 0.3
reg_weight 1
sex_weight 0.14
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Table B.5: Tuned hyper parameters for final education MTL models

parameter value
epochs 24
batch_size 128
drop_rate 0.81
init_mode glorot_normal
optimizer adam
shared_neurons 622
age_specific_neurons 29
edu_specific_neurons 38
eth_specific_neurons 498
reg_specific_neurons 451
sex_specific_neurons 456
age_weight 0.17
edu_weight 1
eth_weight 0.1
reg_weight 0.77
sex_weight 0.28
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Appendix C: Linear Mixed Effects Modeling

Table C.1 presents effect size (η2, noted in the table as “eta2”) and significance informa-

tion (p-value) for each of the non-ngram individual features examined in chapter 4 with

respect to each of the five social traits examined. All models included a fixed effect for

the social trait in question, and a random intercept for subject ID.1 Fixed effects model

training and calculation of effect size and p-value were accomplished via afex 0.24 in R.

Only the effect sizes are presented numerically in table C.1. P-values are indicated

via asterisks. Those effects reaching significance at p < 0.001 are noted with “***”, those

reaching significance at p < 0.01 are noted with “**”, and those reaching significance

at p < 0.05 are noted with “*”. The table is not sorted with respect to effect size or

significance. Rather, the order of features follows the order in which these features were

presented in chapter 4.

Table C.1: Feature effect sizes and significance

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
mean_pitch 0.574*** 0.006 0.003 0.018* 0.007
max_pitch 0.016*** 0.013 0.026** 0.001 0.005
min_pitch 0.023*** 0.001 0.002 0.004 0.012*
jit_loc 0.346*** 0.002 0.017* 0.01 0.003
jit_rap 0.296*** 0.008 0.014 0.016* 0.001
jit_ppq5 0.405*** 0.004 0.008 0.014* 0
shim_loc 0.321*** 0.001 0.041*** 0.023** 0.002
1For example, the formula for the model examining impact of HNR on sex in lmer notation was:

HNR ~ Sex + (1|subj_id)
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
shim_apq3 0.212*** 0.001 0.034*** 0.011 0.001
hnr 0.208*** 0.007 0.004 0.012 0.002
vspace_area 0.161*** 0.018* 0.015* 0.003 0.002
vspace_dispersion 0.195*** 0.022** 0.016* 0.004 0.001
vowel_dynamicity 0 0.006 0.01 0.018* 0.009
f1_25_mean 0.384*** 0.005 0.018* 0.016* 0.019**
f1_50_mean 0.386*** 0.003 0.013 0.018* 0.017**
f1_75_mean 0.326*** 0.001 0.014 0.023** 0.016**
f2_25_mean 0.002 0.005 0.02* 0.004 0.01*
f2_50_mean 0.004 0.007 0.018* 0.007 0.01
f2_75_mean 0.009* 0.005 0.017* 0.008 0.01
f1_25_lob_mean 0 0 0 0 0
f1_50_lob_mean 0 0 0 0 0
f1_75_lob_mean 0 0 0 0 0
f2_25_lob_mean 0 0 0 0 0
f2_50_lob_mean 0 0 0 0 0
f2_75_lob_mean 0 0 0 0 0
f1_25_range 0.009* 0.011 0.013 0.005 0.001
f1_50_range 0.002 0.017* 0.014 0.002 0.001
f1_75_range 0.004 0.008 0.009 0.002 0.002
f2_25_range 0.087*** 0.005 0.016* 0.003 0.004
f2_50_range 0.117*** 0.006 0.011 0.005 0
f2_75_range 0.114*** 0.004 0.02* 0.008 0.001
f1_25_lob_range 0.146*** 0.019* 0.014 0.012 0.006
f1_50_lob_range 0.112*** 0.009 0.031*** 0.008 0.005
f1_75_lob_range 0.111*** 0.003 0.027** 0.008 0.005
f2_25_lob_range 0.049*** 0.025** 0.007 0.006 0.028***
f2_50_lob_range 0.1*** 0.041*** 0.006 0.011 0.011*
f2_75_lob_range 0.073*** 0.011 0.008 0.016* 0.008
AE1_f1 0.083*** 0.07*** 0.024** 0.044*** 0.006
AO1_f1 0.009* 0.01 0.004 0.037*** 0.002
UH1_f1 0.01* 0.008 0.009 0.005 0.003
OY1_f1 0.01 0.013 0.076 0.088 0.014
UW1_f1 0.014** 0.006 0 0.005 0.011*
IH1_f1 0.007* 0.026** 0.01 0.017* 0.003
EH1_f1 0.024*** 0.154*** 0.031*** 0.041*** 0.042***
OW1_f1 0.009* 0.025** 0.012 0.019** 0.014*
AW1_f1 0.038*** 0.026** 0.011 0.002 0.004
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu

EY1_f1 0.011** 0.013 0.006 0.012 0.007
AH1_f1 0 0.009 0.02* 0.006 0.005
AY1_f1 0.001 0.128*** 0.173*** 0.044*** 0.029***
ER1_f1 0 0.004 0.018 0.055*** 0
AA1_f1 0.005 0.028*** 0.003 0.005 0.004
IY1_f1 0.004 0.012 0.005 0.009 0
AE1_f2 0.16*** 0.056*** 0.007 0.029*** 0.003
AO1_f2 0.114*** 0.009 0.015 0.021** 0.001
UH1_f2 0.039*** 0.004 0.002 0.013 0.001
OY1_f2 0.079* 0.048 0.031 0.036 0.041
UW1_f2 0.024*** 0.011 0.005 0.016* 0
IH1_f2 0.147*** 0.017* 0.003 0.001 0.008
EH1_f2 0 0.056*** 0.026** 0.019** 0.001
OW1_f2 0.181*** 0.033*** 0.029*** 0.027** 0.003
AW1_f2 0.192*** 0.021** 0.023** 0.006 0.001
EY1_f2 0.33*** 0.006 0.004 0.014* 0.002
AH1_f2 0.336*** 0.007 0.008 0.038*** 0.001
AY1_f2 0.074*** 0.019* 0.012 0.005 0.017**
ER1_f2 0.152*** 0.032** 0.048*** 0.017* 0.004
AA1_f2 0.253*** 0.003 0.001 0.018* 0.001
IY1_f2 0.366*** 0.005 0.002 0.016* 0.003
AH1_f1_25_lob 0.001 0.004 0.021** 0.009 0.001
AH1_f1_50_lob 0 0.009 0.02* 0.006 0.005
AH1_f1_75_lob 0 0.005 0.014 0.007 0.003
AH1_f2_25_lob 0.304*** 0.011 0.004 0.039*** 0.004
AH1_f2_50_lob 0.336*** 0.007 0.008 0.038*** 0.001
AH1_f2_75_lob 0.377*** 0.009 0.007 0.03*** 0.001
AA1_f1_25_lob 0.006* 0.034*** 0.002 0.011 0.002
AA1_f1_50_lob 0.005 0.028*** 0.003 0.005 0.004
AA1_f1_75_lob 0.026*** 0.022** 0.003 0.003 0.003
AA1_f2_25_lob 0.203*** 0.004 0.001 0.019* 0.002
AA1_f2_50_lob 0.253*** 0.003 0.001 0.018* 0.001
AA1_f2_75_lob 0.316*** 0.003 0.005 0.014* 0.002
AY1_f1_25_lob 0.012** 0.08*** 0.178*** 0.029*** 0.016**
AY1_f1_50_lob 0.001 0.128*** 0.173*** 0.044*** 0.029***
AY1_f1_75_lob 0.004 0.161*** 0.079*** 0.035*** 0.026***
AY1_f2_25_lob 0.242*** 0.014* 0.007 0.014* 0.005
AY1_f2_50_lob 0.074*** 0.019* 0.012 0.005 0.017**
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
AY1_f2_75_lob 0.054*** 0.017* 0.009 0.02** 0.006
UW1_f1_25_lob 0.023*** 0.007 0.002 0.013* 0.008
UW1_f1_50_lob 0.014** 0.006 0 0.005 0.011*
UW1_f1_75_lob 0.045*** 0.003 0.003 0.005 0.005
UW1_f2_25_lob 0.062*** 0.01 0.005 0.013 0
UW1_f2_50_lob 0.024*** 0.011 0.005 0.016* 0
UW1_f2_75_lob 0.004 0.008 0.001 0.009 0
EY2_f1_25_lob 0.002 0.049 0.054 0.014 0.06*
EY2_f1_50_lob 0 0.006 0.028 0.033 0.061*
EY2_f1_75_lob 0.028 0.013 0.033 0.043 0.036
EY2_f2_25_lob 0.051* 0.011 0.048 0.049 0.009
EY2_f2_50_lob 0.072** 0.006 0.069 0.116** 0
EY2_f2_75_lob 0.127*** 0.008 0.045 0.043 0.008
OW1_f1_25_lob 0.01** 0.035*** 0.066*** 0.033*** 0.023***
OW1_f1_50_lob 0.009* 0.025** 0.012 0.019** 0.014*
OW1_f1_75_lob 0.047*** 0.002 0.003 0.012 0.005
OW1_f2_25_lob 0.256*** 0.057*** 0.01 0.02** 0.004
OW1_f2_50_lob 0.181*** 0.033*** 0.029*** 0.027** 0.003
OW1_f2_75_lob 0.135*** 0.027** 0.033*** 0.019** 0.002
AO1_f1_25_lob 0.019*** 0.002 0.001 0.043*** 0.001
AO1_f1_50_lob 0.009* 0.01 0.004 0.037*** 0.002
AO1_f1_75_lob 0.004 0.01 0.004 0.025** 0.004
AO1_f2_25_lob 0.071*** 0.009 0.014 0.017* 0.002
AO1_f2_50_lob 0.114*** 0.009 0.015 0.021** 0.001
AO1_f2_75_lob 0.206*** 0.011 0.012 0.019* 0
EH1_f1_25_lob 0.009* 0.138*** 0.043*** 0.034*** 0.04***
EH1_f1_50_lob 0.024*** 0.154*** 0.031*** 0.041*** 0.042***
EH1_f1_75_lob 0.055*** 0.147*** 0.012 0.032*** 0.029***
EH1_f2_25_lob 0.018*** 0.036*** 0.02* 0.007 0.001
EH1_f2_50_lob 0 0.056*** 0.026** 0.019** 0.001
EH1_f2_75_lob 0.012** 0.045*** 0.01 0.023** 0.006
EY1_f1_25_lob 0 0.059*** 0.078*** 0.027** 0.022**
EY1_f1_50_lob 0.011** 0.013 0.006 0.012 0.007
EY1_f1_75_lob 0.022*** 0.006 0.018* 0.004 0
EY1_f2_25_lob 0.272*** 0.008 0.006 0.008 0.001
EY1_f2_50_lob 0.33*** 0.006 0.004 0.014* 0.002
EY1_f2_75_lob 0.377*** 0.008 0.006 0.017* 0.002
AW1_f1_25_lob 0.034*** 0.008 0.011 0.006 0.003
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
AW1_f1_50_lob 0.038*** 0.026** 0.011 0.002 0.004
AW1_f1_75_lob 0.019*** 0.036*** 0.012 0.005 0.004
AW1_f2_25_lob 0.111*** 0.037*** 0.024** 0.014* 0.004
AW1_f2_50_lob 0.192*** 0.021** 0.023** 0.006 0.001
AW1_f2_75_lob 0.178*** 0.004 0.013 0.004 0.001
AA2_f1_25_lob 0.001 0.072 0.054 0.084* 0.002
AA2_f1_50_lob 0.008 0.052 0.052 0.116* 0.016
AA2_f1_75_lob 0.004 0.041 0.033 0.06 0.013
AA2_f2_25_lob 0.165*** 0.013 0.066 0.025 0.006
AA2_f2_50_lob 0.155*** 0.011 0.069 0.007 0.041
AA2_f2_75_lob 0.173*** 0.012 0.101* 0.011 0.032
IH1_f1_25_lob 0.068*** 0.013 0.032*** 0.011 0.005
IH1_f1_50_lob 0.007* 0.026** 0.01 0.017* 0.003
IH1_f1_75_lob 0.002 0.032*** 0.011 0.01 0.006
IH1_f2_25_lob 0.12*** 0.031*** 0.003 0.003 0.006
IH1_f2_50_lob 0.147*** 0.017* 0.003 0.001 0.008
IH1_f2_75_lob 0.139*** 0.025** 0.015 0.002 0.004
ER1_f1_25_lob 0 0.032** 0.015 0.062*** 0.004
ER1_f1_50_lob 0 0.004 0.018 0.055*** 0
ER1_f1_75_lob 0.016** 0.013 0.01 0.017* 0.003
ER1_f2_25_lob 0.116*** 0.023* 0.038*** 0.008 0.003
ER1_f2_50_lob 0.152*** 0.032** 0.048*** 0.017* 0.004
ER1_f2_75_lob 0.132*** 0.016 0.018 0.008 0.002
UH1_f1_25_lob 0.034*** 0.003 0.018* 0 0.003
UH1_f1_50_lob 0.01* 0.008 0.009 0.005 0.003
UH1_f1_75_lob 0 0.008 0.011 0.009 0.001
UH1_f2_25_lob 0.026*** 0.004 0.006 0.01 0.004
UH1_f2_50_lob 0.039*** 0.004 0.002 0.013 0.001
UH1_f2_75_lob 0.068*** 0.01 0.011 0.019* 0.001
AE1_f1_25_lob 0.083*** 0.053*** 0.022** 0.038*** 0.004
AE1_f1_50_lob 0.083*** 0.07*** 0.024** 0.044*** 0.006
AE1_f1_75_lob 0.093*** 0.061*** 0.011 0.034*** 0.006
AE1_f2_25_lob 0.274*** 0.041*** 0.003 0.014* 0.002
AE1_f2_50_lob 0.16*** 0.056*** 0.007 0.029*** 0.003
AE1_f2_75_lob 0.082*** 0.06*** 0.008 0.031*** 0.004
IY1_f1_25_lob 0.026*** 0.009 0.003 0.01 0.002
IY1_f1_50_lob 0.004 0.012 0.005 0.009 0
IY1_f1_75_lob 0 0.012 0.014 0.013* 0.001
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
IY1_f2_25_lob 0.347*** 0.005 0.004 0.016* 0.002
IY1_f2_50_lob 0.366*** 0.005 0.002 0.016* 0.003
IY1_f2_75_lob 0.353*** 0.003 0.005 0.009 0.005
ER2_f1_25_lob 0.09 0.107 0.217 0.218 0.188
ER2_f1_50_lob 0.04 0.063 0.422 0.112 0.058
ER2_f1_75_lob 0.032 0.021 0.626* 0.172 0.028
ER2_f2_25_lob 0.134 0.032 0.427 0.211 0.163
ER2_f2_50_lob 0.318* 0.024 0.305 0.217 0.256
ER2_f2_75_lob 0.317* 0.087 0.142 0.165 0.434
UW2_f1_25_lob 0.009 0.039 0.02 0.033 0.008
UW2_f1_50_lob 0.028 0.042 0.049 0.066 0.009
UW2_f1_75_lob 0.004 0.051 0.103* 0.094* 0.013
UW2_f2_25_lob 0.003 0.031 0.014 0.016 0.069*
UW2_f2_50_lob 0.002 0.008 0.024 0.042 0.022
UW2_f2_75_lob 0.01 0.005 0.008 0.042 0.004
EH2_f1_25_lob 0.009 0.029 0.093** 0.053 0.003
EH2_f1_50_lob 0.001 0.016 0.04 0.012 0.007
EH2_f1_75_lob 0.003 0.026 0.015 0.009 0.004
EH2_f2_25_lob 0 0.026 0.009 0.005 0.004
EH2_f2_50_lob 0 0.058 0.014 0.006 0.022
EH2_f2_75_lob 0 0.067* 0.005 0.009 0.025
IY2_f1_25_lob 0.014 0.004 0.025 0.042 0.068*
IY2_f1_50_lob 0 0.058 0.151** 0.049 0.055
IY2_f1_75_lob 0 0.141** 0.084 0.038 0.081*
IY2_f2_25_lob 0.211*** 0.004 0.046 0.017 0.01
IY2_f2_50_lob 0.187*** 0.04 0.021 0.006 0.002
IY2_f2_75_lob 0.129*** 0.054 0.034 0.072 0.03
OY1_f1_25_lob 0.053 0.013 0.074 0.097 0.038
OY1_f1_50_lob 0.01 0.013 0.076 0.088 0.014
OY1_f1_75_lob 0 0.044 0.039 0.091 0.003
OY1_f2_25_lob 0.039 0.062 0.129 0.038 0.017
OY1_f2_50_lob 0.079* 0.048 0.031 0.036 0.041
OY1_f2_75_lob 0.03 0.072 0.038 0.019 0.012
OW2_f1_25_lob 0.003 0.009 0.017 0.02 0.002
OW2_f1_50_lob 0.016 0.007 0.011 0.025 0.01
OW2_f1_75_lob 0.006 0.002 0.012 0.026 0.013
OW2_f2_25_lob 0.062*** 0.02 0.074** 0.01 0.009
OW2_f2_50_lob 0.067*** 0.009 0.053* 0.013 0.018
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu
OW2_f2_75_lob 0.05** 0.009 0.035 0.007 0.012
IH2_f1_25_lob 0.039*** 0.011 0.038* 0.004 0.025*
IH2_f1_50_lob 0.002 0.016 0.019 0.008 0.001
IH2_f1_75_lob 0 0.015 0.026 0.007 0.004
IH2_f2_25_lob 0.028** 0.01 0.003 0.011 0.001
IH2_f2_50_lob 0.01 0.005 0.022 0.029 0.001
IH2_f2_75_lob 0.029** 0.005 0.024 0.021 0.003
say 0.001 0.023** 0.012 0.019** 0.006
go 0 0.002 0.003 0.004 0.014*
be_like 0.001 0.006 0.137*** 0.008 0.005
be_all 0.002 0.006 0.009 0.003 0.001
really 0.001 0.021** 0.063*** 0.022** 0.022**
like 0 0.018* 0.239*** 0.036*** 0.012*
just 0.005 0.013 0.011 0.001 0.001
well 0 0.002 0.008 0.007 0.007
okay 0.001 0.059*** 0.007 0.005 0.007
yeah 0.014** 0.015* 0.019* 0.013* 0.009
right 0.005 0.006 0.011 0.009 0.002
so 0.002 0.055*** 0.021** 0.019* 0.001
kinda 0.001 0.001 0.01 0.007 0
sorta 0.002 0.004 0.01 0.003 0.007
kind_of 0 0.012 0.017* 0.004 0.021**
sort_of 0.002 0.017* 0.006 0.004 0.012*
you_know 0.001 0.025** 0.04*** 0.005 0.014*
i_mean 0 0.001 0.011 0.001 0.002
i_guess 0.004 0.005 0.02* 0.008 0.009
i_know 0.026*** 0.006 0.015* 0.007 0
will 0.003 0.004 0.008 0.008 0.007
would 0.002 0.018* 0.008 0.003 0.006
shall 0.002 0.002 0.001 0.002 0.011*
should 0.002 0.009 0.004 0.006 0.014*
may 0 0 0.011 0.003 0
might 0.004 0.002 0.01 0.005 0.005
can 0.001 0.002 0.003 0.005 0.004
could 0.002 0.015* 0.01 0.007 0.003
ought 0.002 0.015* 0.009 0.009 0.002
must 0.005 0.006 0.004 0.005 0.013*
going_to 0 0 0 0 0
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Table C.1: Feature effect sizes and significance (cont.)

feature eta2_sex eta2_eth eta2_age eta2_reg eta2_edu

have_to 0.004 0.009 0.015* 0.008 0.009
need_to 0 0.004 0.005 0.005 0.01
pron_1st_prop 0.001 0.034*** 0.043*** 0.008 0.007
pron_2nd_prop 0.005 0.027** 0.004 0.003 0.002
pron_3rd_prop 0.002 0.022** 0.046*** 0.016* 0.005
i 0.009* 0.005 0.019* 0.007 0.001
taboo_freq 0 0.002 0.013 0.003 0.001
polite_freq 0.005 0.002 0.009 0.005 0.002
intense_very 0.006* 0.019* 0.016* 0.005 0
intense_so 0.007* 0.008 0.003 0.008 0
intense_really 0.004 0.029*** 0.039*** 0.021** 0.023***
intense_too 0 0.002 0.012 0.002 0
intense_real 0 0.013 0.014 0.008 0.009
intense_right 0.003 0.01 0.006 0.003 0.002
intense_pretty 0.019*** 0.016* 0.035*** 0.012 0.013*
intense_totally 0.003 0.005 0.02* 0.002 0.002
intense_completely 0 0.005 0.013 0.001 0.002
intense_absolutely 0 0.003 0.018* 0.009 0.001
intense_highly 0 0 0 0 0
intense_seriously 0.001 0.001 0.011 0.014* 0.003
intense_damn 0.001 0.001 0.013 0.003 0.007
intense_fucking 0 0 0 0 0
avg_syl_len 0 0.017* 0.017* 0.019* 0.029***
tok_per_min 0.001 0.018* 0.016* 0.014* 0.003
sent_polarity 0.002 0.018* 0.005 0.004 0.006
sent_subjectivity 0.001 0.011 0.008 0.014* 0.002
quotative_freq 0.001 0.003 0.05*** 0.002 0.009
modal_freq 0.003 0.017* 0.013 0 0.013*
discourse_marker_freq 0.006* 0.035*** 0.098*** 0.025** 0.005
intensifier_freq 0.002 0.035*** 0.016* 0.019** 0.008
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Appendix D: Lexical Sets

The full set of lexical items belonging to each group of lexical features discussed in

chapter 4 are listed below.

D.1 Quotatives

Drawn from Barbieri (2008):

• Go
• Say
• Be like
• Be all
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D.2 Modals

Drawn from Barbieri (2008):

• will
• would
• shall
• should
• may
• might
• can
• could
• ought
• must
• going to
• have to
• need to

D.3 Discourse Markers

Drawn from Barbieri (2008):

• really
• like
• just
• well
• okay
• yeah
• right
• so
• kinda
• sorta
• kind of
• sort of
• you know
• i mean
• i guess
• i know
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D.4 Politeness Markers

Drawn from Biber et al. (1999):

• please
• thank
• thanks
• sorry
• pardon
• excuse
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D.5 Taboo Markers

Drawn from Lancker and Cummings (1999):

• fuck
• fucking
• cunt
• shit
• bastard
• damn
• goddamn
• god
• whore
• nigger
• fascist
• hell
• heck
• crap
• bitch
• christ
• screw
• piss
• ass
• butt
• slut
• ream
• shaft
• balls
• jesus
• cock
• prick
• dick
• penis
• fart
• asshole
• bullshit
• blow
• blowjob
• dildo
• motherfucker
• queer
• spic
• dipshit
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D.6 Intensifiers

Drawn from Barbieri (2008):

• very
• so
• really
• too
• real
• right
• pretty
• totally
• completely
• absolutely
• highly
• seriously
• damn
• fucking
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